暨南大学化学学院李丹研究小组提出了MOF-5类似物化学空间的机器学习辅助探索增强C2H6/C2H4分离。2025年3月11日出版的《德国应用化学》杂志发表了这项成果。
在此,该课题组提出了一种机器学习辅助的分子模拟策略来探索pcu-MOFs与MOF-5等垂直的C2H6/C2H4分离能力。极限梯度增强(XGBoost)算法对C2H6/C2H4选择性和C2H6摄取具有较高的预测精度,其中亨利系数比(S0)和C2H6的亨利系数(K(C2H6))是预测C2H6的关键因素。该课题组进一步合成了性能最好的MOF,命名为A-66,并通过实验验证了它具有较大的C2H6吸附量和优异的C2H6/C2H4分离性能。这项工作为探索MOF-5类似物的化学空间和从C2H6/C2H4混合物中高效纯化C2H4提供了有价值的策略。
研究人员表示,采用C2H6选择性吸附剂进行吸附分离,可直接产生高纯度的C2H4,是一种具有替代低温精馏潜力的节能分离方法。虽然已经报道了许多C2H6选择性MOFs,但开发具有大C2H6吸附容量和高C2H6/C2H4选择性的MOFs仍然具有挑战性。
附:英文原文
Title: Machine Learning-Assisted Exploration of Chemical Space of MOF-5 Analogues for Enhanced C2H6/C2H4 Separation
Author: Ying Wang, Zhi-Jie Jiang, Weigang Lu, Dan Li
Issue&Volume: 2025-03-11
Abstract: Adsorptive separation using C2H6-selective adsorbents can produce high-purity C2H4 directly, making it an energy-efficient separation method with the potential to replace cryogenic distillation. While many C2H6-selective MOFs have been reported, developing MOFs with both large C2H6 adsorption capacity and high C2H6/C2H4 selectivity remains challenging. Herein, we present a machine learning-assisted molecular simulation strategy to explore the C2H6/C2H4 separation capability of pcu-MOFs isoreticular to MOF-5. The eXtreme Gradient Boosting (XGBoost) algorithm showed high accuracy in predicting the C2H6/C2H4 selectivity and C2H6 uptake, where Henry coefficient ratio (S0) and Henry coefficient of C2H6 (K(C2H6)) were identified as key factors. We further synthesized the top-performing MOF termed A-66 and experimentally verified its large C2H6 adsorption capacity and excellent C2H6/C2H4 separation performance. This work provides a valuable strategy for exploring the chemical space of MOF-5 analogues and identifying promising candidates for the efficient purification of C2H4 from C2H6/C2H4 mixtures.
DOI: 10.1002/anie.202500783
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202500783
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx