当前位置:科学网首页 > 小柯机器人 >详情
通过生物启发离子通道设计加速非浓缩水溶液中的离子脱溶
作者:小柯机器人 发布时间:2025/2/7 13:21:37

近日,重庆大学李猛及其研究小组通过生物启发离子通道设计加速非浓缩水溶液中的离子脱溶。这一研究成果于2025年2月5日发表在国际顶尖学术期刊《美国化学会杂志》上。

受细胞膜上生物离子通道的启发,该研究团队提出了一种有效的方法来设计电极表面,在电化学界面诱导水合离子的脱溶,并抑制非浓缩电解质中的水分解。生物工程策略能够诱导可控的脱溶,并加速水合离子(如钾)的运输。

亚纳米设计(0.8 nm)使得水合钾离子在水合数仅为0.3的情况下脱离其溶剂化壳,而孔基团与钾离子之间的静电相互作用促进了它们的运输。锌||电池在1mA cm-2 / 10mAh cm-2下的稳定循环寿命超过1000小时。该研究为低浓度水系电解质中电化学界面的调控提供了新的思路,为设计水系储能装置提供了新的思路。

研究人员表示,在基于水的电化学储能装置中,水在电化学界面处不受控制的水解限制了这种水电池或超级电容器的应用。“盐中水”设计是拓宽水性电解质电化学稳定性窗口的有效策略,但制造成本高、电解质粘度高等缺点也阻碍了其发展。

附:英文原文

Title: Accelerating Ion Desolvation via Bioinspired Ion Channel Design in Nonconcentrated Aqueous Electrolytes

Author: Jiangbin Deng, Guanfeng Xue, Chen Li, Shuang Zhao, Yujie Zheng, Yuting He, Ruduan Yuan, Kaixin Wang, Tangming Mo, Yuxuan Xiang, Yu Chen, Yang Geng, Luda Wang, Guang Feng, Xu Hou, Meng Li

Issue&Volume: February 5, 2025

Abstract: In aqueous-based electrochemical energy storage devices, uncontrolled hydrolysis of water at the electrochemical interfaces limits the application of such aqueous batteries or supercapacitors in business. The “water-in-salt” design is a valid strategy to broaden the electrochemical stability window in aqueous electrolytes, but drawbacks such as high manufacturing cost, high electrolyte viscosity, etc., also hinder its development. Here, inspired by biological ion channels in cell membranes, we propose an effective approach to engineer the electrode surface, inducing the desolvation of hydrated ions at the electrochemical interface and inhibiting water decomposition in nonconcentrated electrolytes. The biological engineering strategy enables the induction of controlled desolvation and accelerates the transportation of hydrated ions, e.g., potassium. The subnanometer design (0.8 nm) forces the hydrated potassium ions to shed their solvation shell with a hydration number of only 0.3, while the electrostatic interactions between the pore groups and the potassium ions facilitate their transport. The Zn||Zn cells demonstrate a stable cycling lifespan of over 1000 h at 1 mA cm–2/10 mAh cm–2. This work sheds new light on regulating the electrochemical interfaces in low-concentration aqueous electrolytes for designing aqueous-based energy storage devices.

DOI: 10.1021/jacs.4c15443

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c15443

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000