在此,研究小组合成了一种固溶体&铜锌氰酰胺(Cu0.8Zn0.2NCN),具有局部结构畸变和定制的表面静电势,允许NO2-的不对称结合。它表现出优异的NO2RR性能,法拉第效率为~100%,NH3产率为22mg h-1 cm-2,是同类工艺中最好的。理论计算和原位光谱测量表明,与线极化[NCN]2-配位的Cu-Zn位点可以将CuNCN-NO2-中的对称[Cu-O-N-O-Cu]转变为Cu0.8Zn0.2NCN-NO2-中的[Cu-N-O-Zn]不对称构型,从而增强吸附和键解理作用。以Cu0.8Zn0.2NCN为阴极的配对电精炼厂在2.36V电压下达到2000mA cm-2,并在试验级400mA cm-2下保持完全工作140h, NH3产率为~30mgNH3 h-1 cm-2。他们的工作开辟了一条剪裁表面静电电位的新途径,为先进的电催化开辟了固溶体策略。
据悉,电催化亚硝酸盐还原(NO2RR)将含氮污染物在环境条件下转化为高值氨(NH3)。但由于其多中间体和多电子耦合质子转移过程导致现有电催化剂的活性和NH3选择性较低。
附:英文原文
Title: A Copper–Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction
Author: Jiacheng Jayden Wang, Huong T. D. Bui, Xunlu Wang, Zhuoran Lv, Huashuai Hu, Shuyi Kong, Zhiqiang Wang, Lijia Liu, Wei Chen, Hui Bi, Minghui Yang, Tore Brinck, Jiacheng Wang, Fuqiang Huang
Issue&Volume: February 18, 2025
Abstract: The electrocatalytic nitrite reduction (NO2RR) converts nitrogen-containing pollutants to high-value ammonia (NH3) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH3 selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper–zinc cyanamide (Cu0.8Zn0.2NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO2–. It exhibits outstanding NO2RR performance with a Faradaic efficiency of ~100% and an NH3 yield of 22 mg h–1 cm–2, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu–Zn sites coordinated with linear polarized [NCN]2– could transform symmetric [Cu–O–N–O–Cu] in CuNCN-NO2– to a [Cu–N–O–Zn] asymmetric configuration in Cu0.8Zn0.2NCN-NO2–, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu0.8Zn0.2NCN cathode reaches 2000 mA cm–2 at 2.36 V and remains fully operational at industrial-level 400 mA cm–2 for >140 h with a NH3 production rate of ~30 mgNH3 h–1 cm–2. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.
DOI: 10.1021/jacs.5c00837
Source: https://pubs.acs.org/doi/full/10.1021/jacs.5c00837
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000