通过自组装金属-有机框架的约束转化产生voronoi型细胞膜,这一成果由复旦大学高分子科学系董安钢
该研究团队引入了一种约束转换方法,通过将金属有机框架,特别是沸石咪唑酸框架-8 (ZIF-8)转化为层状氢氧化物来生成二维(2D) Voronoi图案。在马兰戈尼效应的驱动下,这个过程从ZIF-8粒子在液-气界面上自我组装成致密的单层开始。随后的Ni2+诱导蚀刻将漂浮的ZIF-8单层转化为由相互连接的多边形细胞组成的独立膜,与Voronoi镶嵌的几何特征非常相似。该团队系统地研究了影响ZIF-8粒子转化的参数,揭示了Voronoi模式形成的机制。机械测试和模拟表明,由于其voronoi型结构,所得细胞膜表现出增强的应力分布和抗裂性。这些由ni基氢氧化物组成的单片膜作为催化剂载体材料时,可以通过促进水解离来协同提高Pt催化剂的碱性析氢反应的本征活性。这项工作为创造具有最佳应力管理、优越机械性能和潜在催化应用的自然灵感材料提供了一种有前途的方法。
据悉,纳米粒子的自组装可以制造复杂的、受自然启发的结构。其中,Voronoi镶嵌图案──在昆虫翅膀和植物组织等许多自然系统中发现的复杂图案──在材料科学、生物学和地理学领域具有广泛的意义。然而,通过纳米粒子自组装在纳米尺度上复制这些不规则但有组织的特征仍然具有挑战性。
附:英文原文
Title: Emergence of Voronoi-Patterned Cellular Membranes via Confinement Transformation of Self-Assembled Metal–Organic Frameworks
Author: Xiangyun Xi, Longfei Lv, Xiaoli Gong, Zhebin Zhang, Yifan Gao, Yan Xia, Siyu Wan, Xuesong Wu, Hushui Chen, Dong Yang, Yuwen Zeng, Hongyuan Sheng, Tongtao Li, Angang Dong
Issue&Volume: February 12, 2025
Abstract: The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal–organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid–air interface, driven by the Marangoni effect. Subsequent Ni2+-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.
DOI: 10.1021/jacs.4c17866
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c17866
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000