当前位置:科学网首页 > 小柯机器人 >详情
疾病相关变异的功能分析阐明NLRP3激活和抑制的机制
作者:小柯机器人 发布时间:2025/2/11 16:13:33

澳大利亚墨尔本大学Seth L. Masters小组开发出疾病相关变异的功能分析阐明NLRP3激活和抑制的机制。2025年2月10日,国际知名学术期刊《自然—免疫学》发表了这一成果。

在这里,该研究团队介绍了来自国际INFEVERS登记处和ClinVar数据库的534种NLRP3变异的功能筛选和自动分析。这种抗性捕获了NLRP3变异体在低温下、炎症小体刺激后和特异性NLRP3抑制剂MCC950对ASC斑点形成的自发影响。最值得注意的是,他们的分析促进了对infervers中NLRP3变异的最新分类。结构分析表明CAPS变体激活NLRP3的多种机制,包括增强ATP结合、稳定活性NLRP3构象、破坏非活性NLRP3复合物的稳定以及促进pyrin结构域的低聚化。

此外,研究组发现致病变异可以使NLRP3的激活对尼日利亚菌素和低温暴露产生超敏反应。该研究团队还发现,大多数CAPS相关的NLRP3变异可以被MCC950抑制;然而,影响抑制剂结合位点附近螺旋的脯氨酸变化的NLRP3变体对MCC950具有抗性,pyrin结构域的变体也是如此,可能直接触发ASC pyrin结构域的激活。

他们的研究结果可以帮助对NLRP3抑制剂临床试验的CAPS群体进行分层,并且他们的自动化方法可以用于具有不同激活机制的分子和世界各地的实验室,这些实验室有兴趣在抗性中添加新的功能验证的NLRP3变体。总的来说,他们的研究为CAPS患者提供了更好的诊断,对NLRP3激活的机制有了深入的了解,并为未来靶向治疗的应用提供了患者分层。

据悉,NLRP3炎性小体是一种多蛋白复合物,介导caspase-1激活和促炎细胞因子的释放,包括白细胞介素(IL)-1β和IL-18。编码NLRP3(也称为crypyrin)的基因的功能获得变异导致组成炎性体激活和过量的IL-1β产生在crypyrin相关周期性综合征(CAPS)中。

附:英文原文

Title: Mechanisms of NLRP3 activation and inhibition elucidated by functional analysis of disease-associated variants

Author: Feng, Shouya, Wierzbowski, Matthew C., Hrovat-Schaale, Katja, Dumortier, Andreas, Zhang, Yaoyuan, Zyulina, Maria, Baker, Paul J., Reygaerts, Thomas, Steiner, Annemarie, De Nardo, Dominic, Narayanan, Dhanya Lakshmi, Milhavet, Florian, Pinzon-Charry, Alberto, Arostegui, Juan Ignacio, Khubchandani, Raju P., Geyer, Matthias, Boursier, Guilaine, Masters, Seth L.

Issue&Volume: 2025-02-10

Abstract: The NLRP3 inflammasome is a multiprotein complex that mediates caspase-1 activation and the release of proinflammatory cytokines, including interleukin (IL)-1β and IL-18. Gain-of-function variants in the gene encoding NLRP3 (also called cryopyrin) lead to constitutive inflammasome activation and excessive IL-1β production in cryopyrin-associated periodic syndromes (CAPS). Here we present functional screening and automated analysis of 534 NLRP3 variants from the international INFEVERS registry and the ClinVar database. This resource captures the effect of NLRP3 variants on ASC speck formation spontaneously, at low temperature, after inflammasome stimulation and with the specific NLRP3 inhibitor MCC950. Most notably, our analysis facilitated the updated classification of NLRP3 variants in INFEVERS. Structural analysis suggested multiple mechanisms by which CAPS variants activate NLRP3, including enhanced ATP binding, stabilizing the active NLRP3 conformation, destabilizing the inactive NLRP3 complex and promoting oligomerization of the pyrin domain. Furthermore, we identified pathogenic variants that can hypersensitize the activation of NLRP3 in response to nigericin and cold temperature exposure. We also found that most CAPS-related NLRP3 variants can be inhibited by MCC950; however, NLRP3 variants with changes to proline affecting helices near the inhibitor binding site are resistant to MCC950, as are variants in the pyrin domain, which likely trigger activation directly with the pyrin domain of ASC. Our findings could help stratify the CAPS population for NLRP3 inhibitor clinical trials and our automated methodologies can be implemented for molecules with a different mechanism of activation and in laboratories worldwide that are interested in adding new functionally validated NLRP3 variants to the resource. Overall, our study provides improved diagnosis for patients with CAPS, mechanistic insight into the activation of NLRP3 and stratification of patients for the future application of targeted therapeutics.

DOI: 10.1038/s41590-025-02088-9

Source: https://www.nature.com/articles/s41590-025-02088-9

期刊信息

Nature Immunology:《自然—免疫学》,创刊于2000年。隶属于施普林格·自然出版集团,最新IF:31.25
官方网址:https://www.nature.com/ni/
投稿链接:https://mts-ni.nature.com/cgi-bin/main.plex