海底风化可以解释雪球冰期的不同持续时间,这一成果由华盛顿大学David C. Catling课题组经过不懈努力而取得。2025年12月2日出版的《地质学》杂志发表了这项成果。
研究小组提出,这种持续时间的差异是由于海底风化程度的变化,在两次冰期期间,酸性海洋在相对高的二氧化碳下使海底风化程度升高。通过假设现代火山释放气体的速率和保守范围的冰反照率,该课题组人员发现要维持持续5600万年的司图特冰期,需要海底风化速率比现代高25至53倍以抑制大气二氧化碳;而维持400万年的马里诺冰期仅需比现代高不到15倍。深海沉积减少和海水低硫酸盐浓度可能进一步强化了风化速率,这两者既能阻止热液硬石膏的形成,又能创造更多孔隙可风化的洋壳。
地球化学数据表明,在司图特期,海洋硫酸盐含量较低(<2 mM),而在马里诺时期,海洋硫酸盐含量反弹(高达~30 mM),这可以解释他们的模型所要求的不同海底风化速率。他们的研究结果表明,海底风化和不断演变的海洋氧化还原化学对于决定雪球地球冰期的持续时间至关重要。
据介绍,低温期(720635 Ma)见证了两次雪球地球冰期:这是地球历史上已知的对地质碳循环的最大扰动。这两个失控的冰反照率灾难自然地测试了行星气候的稳定性和可居住性。地质年代学数据显示,斯图特冰期持续了56英里,而马里诺冰期仅持续了4英里,这是一个无法解释的差异,之前他们将其归因于火山释放气体速率的变化和冰反照率的变化。
附:英文原文
Title: Seafloor weathering can explain the disparate durations of Snowball glaciations
Author: Trent B. Thomas, Francis A. Macdonald, David C. Catling
Issue&Volume: 2025-12-02
Abstract: The Cryogenian Period (720635 Ma) witnessed two Snowball Earth glaciations: the largest known perturbations to the geologic carbon cycle in Earth history. These two runaway ice-albedo catastrophes naturally test planetary climate stability and habitability. Geochronological data show that the Sturtian glaciation lasted 56 m.y., and the Marinoan was as short as 4 m.y., which is an unexplained difference previously attributed to changing volcanic outgassing rates and dust or ice albedo. Here, we propose that this difference in duration is instead due to changes in the extent of seafloor weathering, which was elevated during both glaciations by an acidic ocean under relatively high CO2. By assuming modern volcanic outgassing rates and a conservative range of ice albedos, we find that seafloor weathering rates 2553 times higher than modern are required to suppress atmospheric CO2 and maintain glaciation for a 56 m.y. Sturtian glaciation, whereas <15 times higher than modern are required for a 4 m.y. Marinoan glaciation. Rates were plausibly enhanced further by reduced deep-sea sedimentation and low marine sulfate, which would have prevented hydrothermal anhydrite production and created more porous, weatherable oceanic crust. Geochemical data indicate low marine sulfate (<2 mM) during the Sturtian, which rebounded for the Marinoan (up to ~30 mM), and can account for the different seafloor weathering rates required by our model. Thus, our results suggest seafloor weathering and evolving ocean redox chemistry are critical for determining the duration of Snowball Earth glaciations.
DOI: 10.1130/G53722.1
Geology:《地质学》,创刊于1973年。隶属于美国地质学会,最新IF:6.324
官方网址:https://pubs.geoscienceworld.org/geology
投稿链接:https://geology.msubmit.net/cgi-bin/main.plex
