利用从头算非绝热分子动力学模拟双层氮化硼(BN)和二硒化钨(WSe2),该团队证明了滑动铁电体中的自发极化如何控制载流子重组。极化驱动边界态的层间分离,抑制电子-空穴波函数重叠,相对于非极性堆叠延长寿命,在电子结构有利于层间局域化的系统中效果最强。值得注意的是,滑动铁电体的缺陷表现出载流子寿命的双向可调性。以BN中的氮空位和WSe2中的硒空位为原型系统,研究小组发现极化开关可以延长载子寿命或加速重组,提供可逆的按需控制。
研究人员进一步提出并验证了实现这种控制的实用途径:光激发和适度电场的协同组合,从而实现确定性的超快极化逆转。该策略将静态陷阱转换为自适应元素,允许单一材料动态优化,以满足相互冲突的设备要求。他们的发现为多功能光电子学铺平了道路,其中载流子动力学可以主动重新编程以满足不断变化的操作需求。
研究人员表示,载流子寿命是提高光电器件效率和功能的关键参数,但传统材料提供的动态和可逆控制机会有限。二维范德华材料中的滑动铁电性提供了一种通过层间平移主动调制电子特性的途径。
附:英文原文
Title: Reprogrammable Carrier Lifetimes in 2D Materials via Ultrafast Ferroelectric Switching
Author: Dongqi Yao, Zhi-Guo Tao, Changwei Zhang, Lei Peng, Xin-Gao Gong, Weibin Chu
Issue&Volume: December 2, 2025
Abstract: Carrier lifetime is a critical parameter in advancing the efficiency and functionality of optoelectronic devices, yet conventional materials provide limited opportunities for dynamic and reversible control. Sliding ferroelectricity in two-dimensional van der Waals materials offers a route to actively modulating electronic properties through interlayer translation. Using ab initio nonadiabatic molecular dynamics simulations on bilayer boron nitride (BN) and tungsten diselenide (WSe2), we demonstrate how spontaneous polarization in sliding ferroelectrics governs carrier recombination. Polarization drives interlayer separation of frontier states, suppressing electron–hole wave function overlap and prolonging lifetimes relative to nonpolar stackings, with the strongest effects in systems whose electronic structure favors interlayer localization. Remarkably, defects in sliding ferroelectrics exhibit bidirectional tunability of carrier lifetimes. Using nitrogen vacancy in BN and selenium vacancy in WSe2 as the prototypical systems, we show that polarization switching can either extend carrier lifetimes or accelerate recombination, providing reversible, on-demand control. We further propose and validate a practical pathway to achieve this control: a synergistic combination of photoexcitation and a modest electric field that enables deterministic, ultrafast polarization reversal. This strategy transforms static traps into adaptive elements, allowing a single material to be optimized on-the-fly for conflicting device requirements. Our findings pave the way for multifunctional optoelectronics where carrier dynamics can be actively reprogrammed to satisfy changing operational demands.
DOI: 10.1021/jacs.5c14715
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c14715
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000
