
普林斯顿大学Sabine Kastner团队取得一项新突破。他们的最新研究探明了高频脉冲促进了人类空间注意力的快速交流。该项研究成果发表在2025年12月2日出版的《自然—神经科学》上。
在空间注意力任务中,参与者在提示位置检测目标,通过使用人类颅内电生理学和脉冲神经网络,该课题组人员发现高频活动爆发(HFAbs)标志着群体放电升高的时间窗口,从而实现快速、远程通信。HFAbs是由感觉线索和目标激发的,与低频节奏动态耦合。值得注意的是,线索诱发HFAbs的强度及其与慢节奏的脱钩都预测了行为的准确性。HFAbs在整个大脑中同步,显示出不同的线索和目标激活的子网络。这些子网络在目标发生后表现出超前-滞后动态,当线索具有信息性时,线索激活的子网络先于目标激活的子网络。计算模型表明,HFAbs反映了向人口峰值的过渡,表示支持注意力表现的网络通信的时间窗口。这些发现确立了HFAbs作为人口状态转换的特征,支持信息在分布式大脑网络中的路由。
据了解,支持灵活行为的全脑通信需要感觉和联想区域之间的协调,但大脑网络如何在快速时间尺度上传递感觉信息以指导行动尚不清楚。
附:英文原文
Title: High-frequency bursts facilitate fast communication for human spatial attention
Author: Banaie Boroujeni, Kianoush, Helfrich, Randolph F., Fiebelkorn, Ian C., Bentley, J. Nicole, Brunner, Peter, Lin, Jack J., Knight, Robert T., Kastner, Sabine
Issue&Volume: 2025-12-02
Abstract: Brain-wide communication supporting flexible behavior requires coordination between sensory and associative regions but how brain networks route sensory information at fast timescales to guide action remains unclear. Using human intracranial electrophysiology and spiking neural networks during spatial attention tasks, where participants detected targets at cued locations, we show that high-frequency activity bursts (HFAbs) mark temporal windows of elevated population firing that enable fast, long-range communications. HFAbs were evoked by sensory cues and targets, dynamically coupled to low-frequency rhythms. Notably, both the strength of cue-evoked HFAbs and their decoupling from slow rhythms predicted behavioral accuracy. HFAbs synchronized across the brain, revealing distinct cue- and target-activated subnetworks. These subnetworks exhibited lead–lag dynamics following target onset, with cue-activated subnetworks preceding target-activated subnetworks when cues were informative. Computational modeling suggested that HFAbs reflect transitions to population spiking, denoting temporal windows for network communications supporting attentional performance. These findings establish HFAbs as signatures of population state transitions, supporting information routing across distributed brain networks.
DOI: 10.1038/s41593-025-02160-5
Source: https://www.nature.com/articles/s41593-025-02160-5
Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新IF:28.771
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex
