当前位置:科学网首页 > 小柯机器人 >详情
磁邻近自旋极化增强催化剂中的电子输运
作者:小柯机器人 发布时间:2025/12/24 11:58:25


近日,浙江工业大学李小年团队研究了磁邻近自旋极化增强催化剂中的电子输运。2025年12月23日出版的《美国化学会志》发表了这项成果。

金属与类石墨烯碳的界面耦合在调控电子结构和自旋行为方面展现出巨大潜力,已成为开发高性能催化体系与自旋电子材料的前沿课题。目前大多数自旋催化研究主要针对开壳层分子,其自旋态匹配可加速反应动力学;而闭壳层分子轨道完全占据,直接的自旋调控效应受限。

研究组提出一种绕开反应物直接自旋操纵的策略:通过自旋极化选择性调控催化剂电子结构,从而间接优化吸附与活化过程。基于此策略,他们构建了具有电荷-自旋协同调控特性的Pd–C–FeOx结构体系。该体系中,钯纳米颗粒被类石墨烯碳层包裹,并与磁性FeOx物种形成界面耦合。这一设计与磁性基底相结合,诱导类石墨烯碳层产生自旋劈裂,从而增强自旋依赖的电子传输,实现对闭壳层分子转化的更有效调控,同步提升加氢活性和抗硫性能。类石墨烯层在保护钯核免受硫中毒的同时促进氢气活化,确保催化剂在苛刻条件下保持高效催化性能。

实验与理论研究表明:铁磁驱动诱导的不对称自旋极化不仅增强了钯与碳之间的d-p轨道耦合,同时富集了表面电子密度,共同产生显著的协同催化增强效应。该研究拓展了自旋调控在闭壳层分子催化中的应用范畴,为开发兼具高活性与强抗硫性的加氢催化剂提供了新的设计范式。

附:英文原文

Title: Spin Polarization by Magnetic Proximity Enhances Electron Transport in Catalysts

Author: Bingcheng Li, Rubo Fang, Ranran Hou, Qianjun Zhang, Xinhui Zhang, Chunshan Lu, Qingtao Wang, Qunfeng Zhang, Feng Liu, Xiaonian Li

Issue&Volume: December 23, 2025

Abstract: The interfacial coupling between metals and graphene-like carbon has demonstrated great potential in tuning electronic structures and spin behavior, emerging as a frontier in the development of high-performance catalytic systems and spintronic materials. Most studies on spin catalysis target open-shell molecules, in which spin-state matching can accelerate reaction kinetics. In contrast, closed-shell molecules have fully occupied orbitals, which restrict direct spin-mediated effects. Here, we introduce a strategy that bypasses direct spin manipulation of reactants. By selectively tuning the catalyst’s electronic structure via spin polarization, this approach indirectly optimizes adsorption and activation. Based on this strategy, we constructed a Pd–C–FeOx architecture featuring synergistic charge–spin regulation. Pd nanoparticles (NPs) are encapsulated by graphene-like layers and interfaced with magnetic FeOx species. This design couples with the magnetic substrate to induce spin splitting in graphene-like carbon. As a result, spin-dependent electron transport is enhanced, enabling more effective control over closed-shell molecular transformations and improving both the hydrogenation activity and sulfur tolerance. The graphene-like layer simultaneously protects Pd cores from sulfur poisoning and facilitates H2 activation, ensuring high catalytic performance under harsh conditions. Experimental and theoretical results reveal that ferromagnetic driving induces asymmetric spin polarization, which strengthens d–p coupling between Pd and carbon; additionally, it enriches the surface electron density, collectively delivering a pronounced synergistic catalytic enhancement. This approach broadens the scope of spin-related regulation in closed-shell molecular catalysis and provides a design paradigm for developing hydrogenation catalysts that combine high activity with robust sulfur resistance.

DOI: 10.1021/jacs.5c16624

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c16624

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000