
德国马克斯·玻恩研究所Daniel Schick课题组研制了激光驱动共振软X射线散射探测纳米级皮秒动力学。这一研究成果于2025年12月2日发表在国际顶尖学术期刊《光:科学与应用》上。
研究小组演示了时间分辨X射线散射与光谱对比在实验室为基础的仪器主题软X射线辐射从激光驱动的等离子体发射。具体来说,研究人员以9 ps的时间分辨率研究了铁磁性FeGd异质结构中出现的磁畴的光致响应。所获得的灵敏度允许在皮到纳秒的时间尺度上非常详细地跟踪域网络的重组。这一仪器开发和实验演示为在灵活的实验室环境中广泛的横向有序系统中研究材料动力学开辟了新天地。
据悉,从晶格的第一个证据到最近原子核最快动力学的发现,X射线散射一直是促进他们对物质理解的不可或缺的工具。除了晶格之外,软X射线的超快共振弹性散射提供了电荷,自旋和轨道顺序的敏感探针,具有无与伦比的纳米空间和飞到皮秒的时间分辨率。然而,由于对X射线的高需求,这项技术的全部潜力在很大程度上仍未得到开发。只有在大型设施中选定的一些仪器才能提供所需的短脉冲和波长可调辐射,这使得实验室规模的实验到目前为止还无法实现。
附:英文原文
Title: Laser-driven resonant soft-X-ray scattering for probing picosecond dynamics of nanometre-scale order
Author: Lunin, Leonid, Borchert, Martin, Schneider, Niklas, Korell, Konstanze, Schneider, Michael, Engel, Dieter, Eisebitt, Stefan, Pfau, Bastian, Schick, Daniel
Issue&Volume: 2025-12-02
Abstract: X-ray scattering has been an indispensable tool in advancing our understanding of matter, from the first evidence of the crystal lattice to recent discoveries of nuclei’s fastest dynamics. In addition to the lattice, ultrafast resonant elastic scattering of soft X-rays provides a sensitive probe of charge, spin, and orbital order with unparalleled nanometre spatial and femto- to picosecond temporal resolution. However, the full potential of this technique remains largely unexploited due to its high demand on the X-ray source. Only a selected number of instruments at large-scale facilities can deliver the required short-pulsed and wavelength-tunable radiation, rendering laboratory-scale experiments elusive so far. Here, we demonstrate time-resolved X-ray scattering with spectroscopic contrast at a laboratory-based instrument using the soft-X-ray radiation emitted from a laser-driven plasma source. Specifically, we investigate the photo-induced response of magnetic domains emerging in a ferrimagnetic FeGd heterostructure with 9 ps temporal resolution. The achieved sensitivity allows for tracking the reorganisation of the domain network on pico- to nanosecond time scales in great detail. This instrumental development and experimental demonstration break new ground for studying material dynamics in a wide range of laterally ordered systems in a flexible laboratory environment.
DOI: 10.1038/s41377-025-02088-2
Source: https://www.nature.com/articles/s41377-025-02088-2
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex
