当前位置:科学网首页 > 小柯机器人 >详情
H2/CO电氧化过程中非直接键合的单原子对
作者:小柯机器人 发布时间:2025/12/2 15:18:56

中国科学技术大学葛君杰团队近日取得一项新成果。经过不懈努力,他们提出了H2/CO电氧化过程中非直接键合的单原子对。该研究于2025年12月1日发表于国际一流学术期刊《科学通报》杂志上。

然而,课题组人员在此提出,完全隔离的SACs是不活跃的,而空间上相邻的单原子对(原子间距离<Å)作为真正的活动场所协同工作。通过石墨烯量子点约束,Rh原子密度精确地调整在0.1 wt% -17.5 wt%之间。数学模型量化了活性对相对于它们的电化学性能的尺度,使活性依赖于原子接近度合理化。18O同位素标记和原位同步红外光谱分析发现了一种新的反应机制,在亚-4Å Rh对,并作为CO和H2氧化的速率决定步骤。而H2O作为反应物进入COOR过程,作为分子催化剂进入HOR过程。他们的发现重新定义了双功能催化,将单原子精度与纳米粒子的协同性结合起来,用于高效的能量转换系统。

据介绍,单原子催化剂(SACs)通过实现H2和CO氧化等氧化过程,挑战了传统的多位点催化。

附:英文原文

Title: Non-directly bonded single-atom pairs towards H2/CO electrooxidation

Author: Xian Wang e, Hao Li c, Junjie Ge a b e

Issue&Volume: 2025/12/01

Abstract: Single-atom catalysts (SACs) challenge conventional multi-site catalysis by enabling oxidative processes like H2 and CO oxidation. However, we herein present that the completely isolated SACs are inactive, while spatially adjacent single-atom pairs (interatomic distance < Å) work cooperatively as the true active sites. Rh atomic densities were precisely tuned between 0.1 wt%–17.5 wt% via graphene quantum dots confinement. Mathematical modeling quantifies the scaling of active pairs versus electrochemical performance, rationalizing activity dependence on atomic proximity. 18O isotope labeling and in situ synchrotron infrared spectroscopy analyses identified a new reaction mechanism, with water bifunctional dissociation enabled on sub-4Å Rh pairs, and acts as the rate-determining step towards both CO and H2 oxidation. While H2O enters the COOR process as a reactant and enters the HOR process as a molecular catalyst. Our findings redefine bifunctional catalysis, merging single-atom precision with nanoparticle-like cooperativity for efficient energy conversion systems.

DOI: 10.1016/j.scib.2025.11.061

Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927325012265

 

期刊信息

Science Bulletin《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9

官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb