
近日,西北工业大学李炫华团队开发了超稳定的植入结构催化剂,用于工业级电流密度的持久酸性CO2电解。该项研究成果发表在2025年12月15日出版的《德国应用化学》杂志上。
酸性电催化二氧化碳还原反应(CO2RR)具有实现高效CO2利用的潜力,但腐蚀性与还原性的酸性电解质通常会导致催化剂降解及不利的自还原现象。
研究组通过一种新型的逐步种子导向结晶技术,策略性地设计了一种植入式结构催化剂,其将Bi2O3纳米颗粒核心封装于沸石晶体内部。该设计能有效抑制酸性CO2RR过程中纳米颗粒的溶解、脱落、团聚与形变,并精确控制纳米颗粒尺寸,从而在单位面积内提供高密度活性位点。伴随产生的强金属氧化物-载体相互作用诱发了电子屏蔽效应,促使电子从Bi向OCHO中间体及沸石单向导出,同时阻止电子向Bi内流,有效防止工作状态的Bi2O3在酸性CO2RR过程中发生自还原。
此外,界面电子转移通过增强OCHO中间体的稳定化作用并削弱*H结合能,从而调控CO2RR中间体覆盖度。这一创新催化剂在酸性CO2电解中表现出优异性能,在1 A cm−2电流密度下实现了99%的最高甲酸法拉第效率及865 mA cm−2的显著分电流密度,特别是在强酸性介质中展现出卓越的稳定性——500小时内法拉第效率持续保持在94%以上。该研究为长效酸性CO2电解及其他催化体系开辟了超稳定植入结构催化剂的新途径。
附:英文原文
Title: Ultrastable Implanting-Structured Catalyst for Long-Lasting Acidic CO2 Electrolysis with Industrial-Level Current Densities
Author: Zhen Zhang, Weiheng Ding, Haoze Zhang, Fei Yan, Jianan Dang, Juan He, Zhenhua Yan, Zhengyu Bai, Xuanhua Li
Issue&Volume: 2025-12-15
Abstract: Acidic electrocatalytic CO2 reduction reaction (CO2RR) holds promise for high CO2 utilization. However, corrosive and reductive acidic electrolytes typically cause catalyst degradation and undesirable self-reduction. In this study, we strategically design an implanting-structured catalyst encompassing Bi2O3 nanoparticles (NPs) core within zeolite crystals through a novel stepwise seed-directed crystallization technique. This design potently inhibits the dissolution, detachment, agglomeration and reshaping of NPs during acidic CO2RR and precisely controls NP size to offer high-density active sites per unit area. The concomitant strong metal oxide-support interaction induces the electron shielding effect, which drives electrons unidirectionally exported from Bi to *OCHO intermediate and zeolite but prevents the electron inflow to Bi, preventing the working Bi2O3 from self-reduction during acidic CO2RR. Meanwhile, the interfacial electron transfer steers the CO2RR intermediates coverage by enhancing *OCHO intermediate stabilization and weakening *H binding. This innovative catalyst has been effectively utilized in acidic CO2 electrolysis, attaining a maximum HCOOH Faradaic efficiency (FE) of 99% and a remarkable partial current density of 865 mA cm2 at 1 A cm2, particularly achieving extraordinary stability – sustain FE exceeding 94% for 500 hours in strongly acidic media. This work opens up new opportunities of ultrastable implanting-structured catalyst for long-lasting acidic CO2 electrolysis and other catalytic systems.
DOI: 10.1002/anie.202524258
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202524258
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx
