人类第2-3层锥体神经元的电生理分类揭示了亚型特异性突触相互作用,这一成果由夏里特-柏林医科大学Yangfan Peng团队经过不懈努力而取得。这一研究成果于2025年12月10日发表在国际顶尖学术期刊《自然—神经科学》上。
在这里,该课题组研究人员使用全细胞膜片钳记录了人类颞叶皮层急性切片中1400多个2-3层(L2-3)锥体神经元和1400个已识别的单突触连接。研究组提取神经元和突触生理学原理以及解剖学和功能性突触连接。小组还展示了锥体神经元在电生理上的分类,通过形态学的差异得到了证实,并破译了亚型特异性的突触相互作用。发现微电路组织原理在个体水平上是守恒的。如此精细的网络结构表明,锥体神经元的功能多样性转化为人类皮层L2-3微电路内的差分计算。
据了解,理解人脑的功能原理需要深入了解其神经元和网络生理学。在颞叶皮层的浅层中,已经描述了谷氨酸能兴奋锥体神经元的分子和形态亚型,但基于电生理参数的亚型尚未进行。锥体神经元亚型在多大程度上通过形成突触亚网络来促进生理相互作用的特化仍不清楚。
附:英文原文
Title: Electrophysiological classification of human layer 2–3 pyramidal neurons reveals subtype-specific synaptic interactions
Author: Planert, Henrike, Mittermaier, Franz Xaver, Grosser, Sabine, Fidzinski, Pawel, Schneider, Ulf Christoph, Radbruch, Helena, Onken, Julia, Holtkamp, Martin, Schmitz, Dietmar, Alle, Henrik, Vida, Imre, Geiger, Jrg Rolf Paul, Peng, Yangfan
Issue&Volume: 2025-12-10
Abstract: Understanding the functional principles of the human brain requires deep insight into its neuronal and network physiology. In superficial layers of temporal cortex, molecular and morphological subtypes of glutamatergic excitatory pyramidal neurons have been described, but subtyping based on electrophysiological parameters has not been performed. The extent to which pyramidal neuron subtypes contribute to the specialization of physiological interactions by forming synaptic subnetworks remains unclear. Here we performed whole-cell patch-clamp recordings of more than 1,400 layer 2–3 (L2–3) pyramidal neurons and 1,400 identified monosynaptic connections in acute slices of human temporal cortex. We extract principles of neuronal and synaptic physiology along with anatomy and functional synaptic connectivity. We also show robust classification of pyramidal neurons into four electrophysiological subtypes, corroborated by differences in morphology and decipher subtype-specific synaptic interactions. Principles of microcircuit organization are found to be conserved at the individual level. Such a fine network structure suggests that the functional diversity of pyramidal neurons translates into differential computations within the L2–3 microcircuit of the human cortex.
DOI: 10.1038/s41593-025-02134-7
Source: https://www.nature.com/articles/s41593-025-02134-7
Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新IF:28.771
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex
