近日,德国汉堡马克斯·普朗克气象研究所David M. Nielsen团队报道了在地球系统模型模拟中,分解的热带气旋触发二氧化碳吸收和浮游植物繁殖。相关论文于2025年12月9日发表在《美国科学院院刊》杂志上。
海洋碳循环直接受到大气中风暴活动的影响。特别是热带气旋,已知其会驱动强烈的海气CO2交换并引发浮游植物水华。然而,当前一代的地球系统模型因其较粗的空间分辨率(通常为100至200公里的网格间距)而无法真实地再现热带气旋。
研究组展示了一个公里尺度、耦合的、分辨风暴与涡旋的全球地球系统模型模拟(海洋5公里,大气5公里),该模型包含了海洋生物地球化学过程,能够解析热带气旋及其引发的级联式物理-生物地球化学响应机制。研究组模拟的热带气旋将CO2通量增强了20至40倍,并使海洋表层降温2至3摄氏度,从而促使CO2通量方向从海洋释气逆转为吸收。此外,该模型显示热带气旋在秋季的北大西洋西部引发了一次浮游植物水华,这一现象在较粗分辨率的地球系统模型中被遗漏。
虽然热带气旋使海洋表层冷却,但也使次表层增温,从而对依赖温度的有机物再矿化过程产生相互抵消的影响。总之,该模型配置再现了海洋碳循环变异的底层机制,这些机制迄今为止在地球系统模型中尚未得到解析。通过在该地球系统模型中呈现精细尺度的大气-海洋-生物地球化学相互作用,研究组为未来的研究工作铺平了道路,以厘清公里尺度事件在全球和气候尺度海洋碳循环中作用的不确定性。
附:英文原文
Title: Resolved tropical cyclones trigger CO2 uptake and phytoplankton bloom in an Earth system model simulation
Author: Nielsen, David M., Chegini, Fatemeh, Serra, Nuno, Kumar, Arjun, Brüggemann, Nils, Hohenegger, Cathy, Ilyina, Tatiana
Issue&Volume: 2025-12-9
Abstract: The ocean carbon cycle is directly impacted by storms in the atmosphere. Tropical cyclones (TCs), particularly, are known to drive intense air–sea CO2 fluxes and to trigger phytoplankton blooms. However, the current generation of Earth system models (ESM) cannot realistically represent TCs due to their coarse spatial resolution (typically 100 to 200 km grid spacing). Here, we present a km-scale coupled, global, storm- and eddy-resolving (5 km ocean, 5 km atmosphere) ESM simulation including ocean biogeochemistry that is able to resolve TCs, and the cascade of physical-biogeochemical mechanisms that unfold in their response. Our simulated TCs enhance CO2 fluxes by 20 to 40 times and cool the surface ocean by 2 to 3 °C, thus contributing to inverting the CO2 flux direction from ocean outgassing to uptake. Our TCs furthermore trigger a phytoplankton bloom in autumn in the western North Atlantic, which is missed by coarser ESMs. While TCs cool the ocean surface, they also warm the subsurface, thus causing counteracting impacts on temperature-dependent organic matter remineralization. In summary, our model configuration reproduces mechanisms underlying the ocean carbon cycle variability that remained so far unresolved in ESMs. By representing fine-scale atmosphere-ocean biogeochemistry interactions in our ESM, we pave the way for future work to constrain uncertainties in the role of km-scale events in the ocean carbon cycle at global and climatic scales.
DOI: 10.1073/pnas.2506103122
Source: https://www.pnas.org/doi/abs/10.1073/pnas.2506103122
