
近日,华南师范大学林晓明团队研究了用于高性能储锂的MOF衍生碳包封ZnS/MnO多孔微球。2025年11月3日,《结构化学》杂志发表了这一成果。
过渡金属化合物具有超高的理论容量和丰富的活性位点等优点,是高能量密度锂离子电池极具前景的负极材料。不幸的是,严重的体积膨胀和导电性差等问题严重阻碍了它们的大规模应用。总的来说,合理优化组成和结构是开发具有优异储锂性能的负极材料的有效策略。
研究组以Zn-Mn有机骨架为自牺牲模板,采用溶剂热硫化和煅烧法制备了ZnS/MnO复合材料。从材料组成上看,ZnS和MnO均具有优异的理论比容量,双组分金属中心可以提供更丰富的活性位点。从结构优化的角度来看,ZnS/MnO复合材料继承了煅烧金属-有机骨架的松散孔隙结构,不仅可以有效缓解充放电过程中的体积膨胀,而且有助于提高复合材料的导电性,促进电荷的输运。
实验结果和密度泛函理论计算均表明,双组分金属中心可以提高ZnS/MnO复合材料的电子导电性,降低迁移能垒,具有良好的循环稳定性和显著的速率性能。该研究为高性能锂离子电池负极材料的开发提供了另一种思路。
附:英文原文
Title: MOF-derived carbon-encapsulated ZnS/MnO porous microspheres for high-performance lithium storage
Author: anonymous
Issue&Volume: 2025-11-03
Abstract: The advantages of transition metal compounds such as ultrahigh theoretical capacity and abundant active sites make them promising anode materials for high energy density lithium-ion batteries. Unfortunately, problems such as severe volume expansion and poor electrical conductivity seriously hinder their large-scale application. In general, reasonable optimization of composition and structure is an effective strategy for developing anode materials with excellent lithium storage properties. In this paper, ZnS/MnO composites were constructed by solvothermal sulfidation and calcination using Zn-Mn organic frameworks as self-sacrificing templates. From the perspective of material composition, both ZnS and MnO have excellent theoretical specific capacity, and the two-component metal center can provide more abundant active sites. From the perspective of structural optimization, the ZnS/MnO composites inherit the loose porous structure of the calcined metal-organic frameworks, which can not only effectively alleviate the volume expansion during the charge and discharge process, but can also help improve the conductivity of the composites and promote charge transport. Both experimental results and density functional theory calculations show that the two-component metal center of ZnS/MnO composites can improve the electronic conductivity and reduce the migration energy barrier, thus showing excellent cycle stability and remarkable rate performance. The study provides another idea for the development of high-performance anode materials for lithium-ion batteries.
DOI: 10.1016/j.cjsc.2025.100795
Source: http://cjsc.ac.cn/cms/issues/922
Chinese Journal of Structural Chemistry:《结构化学》,创刊于1982年。隶属于中国结构化学杂志,最新IF:2.2
官方网址:http://cjsc.ac.cn/
投稿链接:https://www2.cloud.editorialmanager.com/cjschem/default2.aspx
