
近日,常州大学顾培洋团队报道了在螺二芴基共轭有机聚合物中实现电荷和能量同时参与的双通道机制,以增强H2O2的光合作用。相关论文于2025年11月19日发表在《美国化学会志》上。
目前的光催化体系通常侧重于促进载流子分离与传输以提升电荷参与途径的过氧化氢产率,却往往忽视了能量参与途径。将电荷与能量两种参与机制整合于单一光催化剂中实现双通道反应路径,虽有望最大化过氧化氢合成性能,但仍是领域内的重要挑战。得益于其正交构型,螺二芴单元可实现具有多电荷传输路径的正交载流子传输;通过微环境工程调控,所制备的共轭有机聚合物(COPs)的系间窜越过程得到增强,促进三线态激子的高效形成并延长其寿命。
研究组以吡啶单元作为连接基的最高效材料TBSF-Py,同时表现出最低的激子结合能与最长的激子寿命,从而促进单线态氧生成,实现基于电荷与能量双通道机制的过氧化氢光合成。该材料在空气与纯水条件下达到7.21 mmol g-1 h-1的过氧化氢产率,以及高达1.88%的太阳能-化学能转化效率。TBSF-Py在太阳光照射(8小时内累积2.0 mM)、三相漂浮系统(5小时内累积3.0 mM)、连续流动系统(9小时内累积12.4 mM)及光催化抗菌实验(30分钟内灭活率>99%)中均展现出稳定性能。这些指标足以满足毫摩尔级别的小规模及家庭应用需求,证明了其实际应用的全面潜力。该研究为合成具有双通道机制的有机光催化剂提供了一种简单有效的设计策略,助力高效过氧化氢光合成。
附:英文原文
Title: Achieving a Simultaneous Charge- and Energy-Involved Dual-Channel Mechanism in Spirobifluorene-Based Conjugated Organic Polymers for Enhanced H2O2 Photosynthesis
Author: Shiyuan Zhou, Qingxia Zhu, Lixuan Kan, Heman Xu, Xiaobo Luo, Lei Zhu, Danfeng Wang, Guangfeng Liu, Peiyang Gu
Issue&Volume: November 19, 2025
Abstract: Current photocatalytic systems often focus on facilitating carrier separation and transfer to boost charge-involved H2O2 generation while overlooking the energy-involved process. The integration of both charge- and energy-involved processes within a single photocatalyst to achieve a dual-channel mechanism remains a significant challenge, despite its potential to maximize overall H2O2 production performance. Owing to the orthogonal configuration, spirobifluorene enables orthogonal carrier transport with multiple charge transfer pathways; through microenvironment engineering, intersystem crossing is enhanced for the prepared conjugated organic polymers (COPs), promoting efficient formation of the triplet excited state and extending its lifetime. The most efficient COP, TBSF-Py, which employs a pyridine unit as the cross-linker, shows both the lowest exciton binding energy and longest exciton lifetime, thereby promoting 1O2 generation and enabling dual-channel H2O2 photosynthesis via both charge- and energy-involved mechanisms. It achieves a H2O2 production rate of 7.21 mmol g–1 h–1 under air and pure water conditions and a solar-to-chemical conversion (SCC) efficiency of up to 1.88%. TBSF-Py also demonstrates robust performance under solar light irradiation (2.0 mM within 8 h), in triphasic floating (3.0 mM within 5 h), continuous-flow systems (12.4 mM within 9 h), and photocatalytic antimicrobial experiment (>99% inactivation within 30 min). These values are sufficient to meet the requirements for small-scale and household applications at the ~mM level, thereby proving its comprehensive potential for practical applications. This work presents a simple and effective design strategy for the synthesis of organic photocatalysts featuring a dual-channel mechanism toward efficient H2O2 photosynthesis.
DOI: 10.1021/jacs.5c16544
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c16544
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000
