当前位置:科学网首页 > 小柯机器人 >详情
Pd1Cu/Ag-N-C催化剂中Pd诱导的Cu位点分化实现了CO2到C2H4的高效转化
作者:小柯机器人 发布时间:2025/11/20 13:44:05


近日,东北大学李松团队研究了Pd1Cu/Ag-N-C催化剂中Pd诱导的Cu位点分化实现了不对称CO─CHO偶联助力CO2到C2H4的高效转化。这一研究成果于2025年11月19日发表在《德国应用化学》杂志上。

电化学还原CO2制备乙烯是实现工业脱碳与碳资源化的关键策略,但传统铜催化剂上对称性CO─CO耦合固有的高动力学势垒始终制约该过程的发展。

为突破这一根本性挑战,研究组研制了串联结构的Pd1Cu/Ag–N–C催化剂,实现了表面铜位点的功能分化。单原子Pd通过诱导电子异质性,形成两种电子特性迥异的铜位点:邻近Pd的位点利用其促进H2O解离的能力驱动CO质子化生成CHO,而远离Pd的位点则负责稳定*CO中间体。这种协同分工解锁了高效的非对称C─CHO耦合路径。

原位光谱分析与DFT计算证实,该工程化路径将关键C─C耦合能垒降低了约50%。在流动电解池中,该催化剂于-0.97 V(相对于可逆氢电极)条件下实现了78.8%(±2.5%)的乙烯法拉第效率峰值,部分电流密度达441 mA cm-2,并展现出卓越的运行稳定性。研究组通过提出在多碳电催化剂上精准调控反应路径的普适性设计范式,验证了非对称CO─CHO耦合是实现乙烯电合成的一条优越路径。

附:英文原文

Title: Pd-Induced Cu Site Differentiation in Pd1Cu/Ag–N–C Catalyst Enables Asymmetric CO─CHO Coupling for Efficient CO2-to-C2H4 Conversion

Author: Xin Cui, Yihong Yu, Teng Zhang, Pierre Sutra, Gaowu Qin, Song Li

Issue&Volume: 2025-11-19

Abstract: Electrochemical CO2 reduction to ethylene (C2H4) presents a pivotal strategy for industrial decarbonization and carbon valorization but is persistently hindered by the intrinsic high kinetic barrier for symmetric *CO─*CO coupling on conventional Cu catalysts. To surmount this fundamental challenge, we synthesized a tandem Pd1Cu/Ag–N–C catalyst that achieves site differentiation of the surface Cu. The Pd1 atom induces electronic heterogeneity by creating two electronically distinct Cu sites. The Pd-proximal sites promote *CO protonation to *CHO by leveraging Pd assisted H2O dissociation, and Pd-distal sites stabilize *CO. This synergistic division unlocks a highly efficient asymmetric C─CHO coupling pathway. Operando spectroscopy and DFT calculations confirm that the engineered pathway lowers the critical C─C coupling barrier by ~50%. The Pd1Cu/Ag–N–C catalyst delivers a peak C2H4 Faradaic efficiency of 78.8% (±2.5%) with a partial current density of 441 mA cm2 at -0.97 V versus RHE in a flow cell, while maintaining excellent operational stability. This work validates asymmetric CO─CHO coupling as a superior route for C2H4 electrosynthesis by introducing a generalizable design paradigm of precisely steering reaction pathways on multi-carbon electrocatalysts.

DOI: 10.1002/anie.202521173

Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202521173

期刊信息

Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx