
近日,中国科学技术大学李星星团队揭示了氢迁移诱导二维类铁卟啉金属有机骨架的磁相变。这一研究成果发表在2025年11月17日出版的《结构化学》杂志上。
磁态调控对自旋电子学应用至关重要,但仍是当前面临的重大挑战。传统磁控方法主要依赖物理手段,如施加外磁场或利用自旋轨道耦合效应。前期研究曾提出通过酮醇-烯醇互变异构调控体系磁态的新型化学策略。
研究组基于第一性原理计算,将互变异构类型拓展至分子内氢迁移过程,揭示了在由双自由基卟啉类配体与铁原子构成的二维金属有机框架中,氢迁移可实现磁耦合的精准调控并诱导产生不同磁构型。卟啉环内氢原子的迁移会形成四种同分异构的MOF材料,其有机连接体的自旋密度分布发生显著改变,进而调控金属节点与有机连接体间的磁耦合作用,最终实现框架从铁磁态向亚铁磁态的转变。
磁耦合强度也发生显著变化,居里温度由5.2 K提升至100.1 K。此外,伴随磁态转变,该材料体系经历了从常规半导体(带隙0.11 eV和0.03 eV)——其价带与导带位于相同自旋通道,向双极磁性半导体(带隙0.06 eV和0.13 eV)——其价带与导带呈现完全自旋极化且自旋方向相反的电子结构转变。
附:英文原文
Title: Hydrogen migration induced magnetic phase transitions in two-dimensional Fe-porphyrinoid metal-organic frameworks
Author: anonymous
Issue&Volume: 2025-11-17
Abstract: The control of magnetic state is crucial for spintronic applications but remains a significant challenge. Traditionally, controlling magnetic state relies on physical approaches, such as applying external magnetic fields or utilizing spin-orbit coupling. In our previous work, we proposed a novel chemical approach to manipulate the magnetic state of a system through lactim-lactam tautomerization. Here, by first principles calculations, we extend the type of tautomerization to intramolecular hydrogen migration, and reveal that hydrogen migration can modulate magnetic coupling and lead to distinct magnetic configurations in two-dimensional (2D) metal-organic frameworks (MOFs) composed of diradical porphyrinoid and Fe. The migration of hydrogen atoms within porphyrinoid results in four isometric MOFs with notable changes in spin density distribution on organic linkers, which subsequently alters the magnetic coupling between the metal node and organic linkers, leading to ferromagnetic-ferrimagnetic transition in the framework. The magnetic coupling strength also changes significantly, with the Curie temperature enhanced from 5.2 K to 100.1 K. Furthermore, accompanying with the magnetic transition, the MOFs experience an electronic transition from normal half semiconductors (with band gaps of 0.11 and 0.03 eV), where the valence band (VB) and conduction band (CB) share the same spin channel, to bipolar magnetic semiconductors (with band gaps of 0.06 and 0.13 eV), where the VB and CB become fully spin-polarized in opposite directions.
DOI: 10.1016/j.cjsc.2025.100801
Source: http://cjsc.ac.cn/cms/issues/932
Chinese Journal of Structural Chemistry:《结构化学》,创刊于1982年。隶属于中国结构化学杂志,最新IF:2.2
官方网址:http://cjsc.ac.cn/
投稿链接:https://www2.cloud.editorialmanager.com/cjschem/default2.aspx
