近日,美国康奈尔大学McMahon, Peter L.团队研究了可编程片上非线性光子学。这一研究成果发表在2025年10月8日出版的《自然》杂志上。
非线性光学在许多光子技术中起着核心作用,包括经典的和量子的。然而,非线性光学器件的功能通常是在设计时确定的,而在制造时是固定的,将非线性光学的使用限制在可以容忍这种僵化的情况下。
研究组提出了一个具有高度可编程非线性功能的光子器件:一个具有任意可重构的二维χ(2)非线性分布的光学板波导。非线性是通过电场诱导的χ(2)实现的,并且可编程性是通过大规模并行控制器件内的电场分布来设计的,该器件应用为光导层和具有空间光模式的光学编程。为了展示其器件的多功能性,研究组展示了通过在二维上裁剪任意准相位匹配光栅结构来产生二次谐波的光谱、空间和空间光谱工程。
该装置的可编程性使其能够在原位进行光栅结构的逆设计,以及实时反馈以补偿操作和环境条件的波动。该工作表明,研究组可以打破传统的单一设备单一功能范式,潜在地将非线性光学的应用扩展到需要快速设备可重构性的情况下,例如可编程光量子门和量子光强度、全光信号处理、光学计算和自适应结构光。
附:英文原文
Title: Programmable on-chip nonlinear photonics
Author: Yanagimoto, Ryotatsu, Ash, Benjamin A., Sohoni, Mandar M., Stein, Martin M., Zhao, Yiqi, Presutti, Federico, Jankowski, Marc, Wright, Logan G., Onodera, Tatsuhiro, McMahon, Peter L.
Issue&Volume: 2025-10-08
Abstract: Nonlinear optics1 plays a central role in many photonic technologies, both classical2,3,4,5 and quantum6,7,8. However, the function of a nonlinear-optical device is typically determined during design and fixed during fabrication9, restricting the use of nonlinear optics to scenarios in which this inflexibility is tolerable. Here we present a photonic device with highly programmable nonlinear functionality: an optical slab waveguide with an arbitrarily reconfigurable two-dimensional distribution of χ(2) nonlinearity. The nonlinearity is realized using electric-field-induced χ(2) (refs.10,11,12,13,14,15,16), and the programmability is engineered by massively parallel control of the electric-field distribution within the device using a photoconductive layer and optical programming with a spatial light pattern. To showcase the versatility of our device, we demonstrate spectral, spatial and spatio-spectral engineering of second-harmonic generation by tailoring arbitrary quasi-phase-matching grating structures1 in two dimensions. The programmability of the device makes it possible to perform inverse design of grating structures in situ, as well as real-time feedback to compensate for fluctuations in operating and environmental conditions. Our work shows that we can break from the conventional one-device–one-function paradigm, potentially expanding the applications of nonlinear optics to situations in which fast device reconfigurability is desirable—such as in programmable optical quantum gates and quantum light sources7,17,18,19, all-optical signal processing20, optical computation21 and adaptive structured light for sensing22,23,24.
DOI: 10.1038/s41586-025-09620-9
Source: https://www.nature.com/articles/s41586-025-09620-9
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html