当前位置:科学网首页 > 小柯机器人 >详情
通过调压CO吸附和电还原促进原位重建Cu纳米岛上醋酸酯的生成
作者:小柯机器人 发布时间:2025/10/16 16:54:37


近日,厦门大学彭丽团队实现了通过调压CO吸附和电还原促进原位重建Cu纳米岛上醋酸酯的生成。该研究于2025年10月15日发表在《科学通报》杂志上。

利用可再生电力驱动的电化学CO2/CO还原技术,为生产乙酸等高附加值化学品提供了可持续方案。然而,如何调控CO吸附构型仍是实现高乙酸法拉第效率和工业级电流密度的主要挑战。研究组通过理性分析指出,在高过电位条件下,CO补充速率必须与高反应周转速率相匹配,才能维持两种*CO吸附构型的最优比例,进而促进乙酸生成所需的关键C-C耦合步骤。

针对这一难题,研究组通过原位重构构建了Cu-BTA(1H-苯并三氮唑)纳米岛催化剂,并结合升压CO环境构建用于高效调控*CO构型的限域微环境。所设计的Cu-BTA催化剂在7巴CO压力(1巴=100千帕)、-400 mA cm-2条件下,展现出卓越的CO至乙酸转化性能:法拉第效率达80.8%,产率达180 mg h-1 cm-2,性能优于多数铜基催化剂。原位表征与密度泛函理论计算表明,升压CO环境可有效提高顶端吸附CO/桥式吸附CO的比例,加速*CO+*CO→OCCOH这一决速步,并促进CCO、*CH2CO等关键中间体的形成,最终显著提升乙酸产率。

附:英文原文

Title: Promoting acetate production on the in situ reconstructed Cu nanoislands via pressure-regulated CO adsorption and electroreduction

Author: Shuliang Yang b, Shisheng Zheng b, Jun Li a, Li Peng a

Issue&Volume: 2025/10/15

Abstract: Electrochemical CO2/CO reduction (CO2/CORR) driven by renewable electricity offers a sustainable strategy to produce high-value-added products like acetate (CH3COOH). However, the difficulties in regulating CO adsorption geometries remain a major obstacle to achieving high acetate Faradaic efficiency (FE) at industrially relevant current densities. We rationally reason that the CO replenishment rate must match the high turnover rate at high overpotentials so that the optimal ratio between the two *CO configurations could be maintained to promote the critical C-C coupling for acetate production. To address this dilemma, we designed a Cu-BTA (1H-benzotriazole) nanoisland catalyst through in situ reconstruction, combined with elevated CO pressure to create a confined microenvironment for effective *CO configuration modulation. The designed Cu-BTA catalyst exhibits superior CO-to-acetate selectivity with an 80.8% FE and 180 mg h1 cm2 production rate at 400 mA cm2 under 7 bar CO (1 bar = 100 kPa), surpassing most Cu-based catalysts. In situ characterizations and density functional theory (DFT) calculations reveal that elevated CO pressure effectively increases the atop-adsorbed CO/bridge-adsorbed CO (*COatop/*COb) ratio, accelerates the rate-determining step (*CO + *CO to *OCCOH), and promotes the formation of key intermediates such as *CCO and *CH2CO, ultimately boosting CH3COOH production.

DOI: 10.1016/j.scib.2025.10.014

Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927325010369

期刊信息

Science Bulletin《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9

官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb