几乎所有的CuxS化合物都只产生简单的双电子转移产物CO和HCOOH,但在电催化CO2还原反应(CO2RR)中获得多电子转移的烃产物仍然是一个巨大的挑战。此外,确定S原子对催化作用的不同贡献,特别是对电催化CO2RR中的催化活性和产物选择性的贡献,仍然是一项具有挑战性的任务。
该文中,研究人员介绍了一种基于具有确定Cu-S4活性位点的导电二维金属有机框架的模型催化剂,用于CO2RR,称为Cu3(THT)2(THT=2,3,6,7,10,11-六硫基苯)。与主要产生常见双电子转移产物CO(40%选择性)的,具有Cu-N4基序的前体催化剂Cu3(HITP)2不同,Cu3(THT)2将初级产物转化为深度还原产物CH4。
在1.4 V vs. RHE下,Cu3(THT)2对CH4的法拉第效率为63.5%,电流密度高达298.3 mA cm-2。理论研究表明,富电子的Cu-S4位点比Cu-N4位点更有效地稳定和激活关键中间体*CO。此外,S原子可以接受电子并与*CO形成弱S···O相互作用,为*CO提供额外的稳定性。
该项研究首次表明,催化金属位点周围的非金属S中心,可以显著提高和调节CO2RR中的产物选择性。
附:英文原文
Title: Steering CO2 electroreduction to hydrocarbons over 2D thiol-based conductive metal-organic framework
Author: Yuan-Biao Huang a b c
Issue&Volume: 2025/01/22
Abstract: Almost all of CuxS compounds only produce the simple two-electron transferred products CO and HCOOH but it remains a large challenge to obtain the multiple-electron transferred hydrocarbon products in electrocatalytic CO2 reduction reaction (CO2RR). Moreover, identifying the distinct contributions of S atoms to catalysis, particularly for catalytic activity and product selectivity in electrocatalytic CO2RR, remains a challenging task. Herein, we introduce a model catalyst based on a conductive two-dimensional metal-organic framework with defined Cu-S4 active sites, named Cu3(THT)2 (THT = 2,3,6,7,10,11-hexathiotriphenylene) for CO2RR. Unlike the precursor catalyst Cu3(HITP)2 with Cu-N4 motifs that predominantly produce common two-electron transferred product CO (40% selectivity), Cu3(THT)2 shifts the primary product to deep reduction product CH4. At 1.4 V versus the reversible hydrogen electrode (RHE), Cu3(THT)2 achieves a Faradaic efficiency of 63.5% for CH4 and the current density reaches a high of 298.3 mA cm2. Theoretical studies indicate that the electron-rich Cu-S4 sites stabilize and activate the key intermediate *CO more effectively than Cu-N4 sites. Furthermore, S atoms can accept electrons and form weak S···O interactions with *CO, providing additional stabilization for *CO. This study is the first to show that non-metallic S centers around catalytic metal sites can significantly enhance and tune product selectivity in CO2RR.
DOI: 10.1016/j.scib.2025.01.033
Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927325000672
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb