开发具有高容量的快速充电和持久微结构合金阳极,对于提高钠离子电池(SIBs)的运行效率至关重要。然而,这些阳极面临着循环能力和速率能力下降等挑战,主要是由于显著的体积变化(超过252%)和钠离子储存动力学缓慢导致机械降解减少。
该文中,研究人员介绍了一种新型阳极设计,其特征是在高导电碳微球中嵌入密集堆积的铋(Bi),以克服上述挑战。值得注意的是,碳微球内的高负载铋阳极具有2.59 g cm–3的高堆积密度,具有超过590 MPa的显著机械强度,并在钠化后将体积膨胀限制在仅10.9%。该阳极具有高体积容量(908.3 mAh cm-3)、超快充电能力(200 A g-1,仅需5.5秒即可完全充电/放电)和超过12000次循环的出色循环性能,即使在30°C下也能保持出色的循环稳定性。与Na3V2(PO4)3阴极配对的全电池在36℃下循环600次后仍保持80%以上的容量,显示出126℃的显著倍率能力(28.6秒内完全充电/放电)。
全面的实验评估和化学机械模拟揭示了支撑阳极卓越性能的机制。这一发展标志着高性能SIBs耐用快速充电阳极设计的重大进步。
附:英文原文
Title: Mechanically Robust Bismuth-Embedded Carbon Microspheres for Ultrafast Charging and Ultrastable Sodium-Ion Batteries
Author: Jianhai Pan, Zhefei Sun, Xiaoyu Wu, Tongchao Liu, Yurui Xing, Jiawei Chen, Zhichen Xue, Dafu Tang, Xiaoli Dong, Hongti Zhang, Haodong Liu, Qiulong Wei, Dong-Liang Peng, Khalil Amine, Qiaobao Zhang
Issue&Volume: January 14, 2025
Abstract: Advancements in the development of fast-charging and long-lasting microstructured alloying anodes with high volumetric capacities are essential for enhancing the operational efficiency of sodium-ion batteries (SIBs). These anodes, however, face challenges such as declined cyclability and rate capability, primarily due to mechanical degradation reduced by significant volumetric changes (over 252%) and slow kinetics of sodium-ion storage. Herein, we introduce a novel anode design featuring densely packed bismuth (Bi) embedded within highly conductive carbon microspheres to overcome the aforementioned challenges. Remarkably, the high loading Bi anode within carbon microspheres with a high tap density of 2.59 g cm–3 possesses significant mechanical strength exceeding 590 MPa and limits volume swelling of only 10.9% post-sodiation. This anode demonstrates a high volumetric capacity (908.3 mAh cm–3), ultrafast chargeability (200 A g–1, full charge/discharge in just 5.5 s), and outstanding cyclability over 12,000 cycles and maintains exceptional cycling stability even at 30 °C. The full cell paired with a Na3V2(PO4)3 cathode retains over 80% capacity after 600 cycles at 36 C, demonstrating a remarkable rate capability of 126 C (full charge/discharge in 28.6 s). Our comprehensive experimental evaluations and chemo-mechanical simulations shed light on the mechanisms underpinning the anode’s superior performance. This development marks a significant advancement in the design of durable and fast-charging anodes for high-performance SIBs.
DOI: 10.1021/jacs.4c09824
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c09824
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000