当前位置:科学网首页 > 小柯机器人 >详情
科学家利用电介质电泳沉积实现超高分辨率、高保真量子点像素图案化
作者:小柯机器人 发布时间:2024/9/28 23:46:10

近日,苏州大学陈煜&任振伟及其研究团队取得一项新进展。经过不懈努力,他们利用电介质电泳沉积实现超高分辨率、高保真量子点像素图案化。相关研究成果已于2024年9月26日在国际知名学术期刊《光:科学与应用》上发表。

该研究团队提出一种新颖且有效的正交电场诱导模板辅助介电泳沉积方法,成功实现了高达23090像素每英寸(PPI)的超高像素分辨率,同时保真度可达99%。此外,该策略适用于基于钙钛矿CsPbBr3和传统CdSe量子点的量子点像素制备,展现出在量子点像素制造中的广泛应用性。

值得注意的是,研究人员进一步证明了该方法在实现高效电致发光量子点像素方面的巨大价值,其峰值外量子效率可达16.5%。因此,本研究为基于各种量子点实现超高分辨率和高保真度图案提供了一种通用方法,并为制造高性能量子点图案化器件提供了一种新方法。

据悉,高像素分辨率正成为下一代显示器的关键参数之一。尽管已开发出各种量子点(QD)图案化技术,但要实现超高分辨率(>10,000像素每英寸(PPI))和高保真度量子点图案,仍是一项亟待解决的艰巨挑战。

附:英文原文

Title: Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition

Author: Luo, Chengzhao, Ding, Yanhui, Ren, Zhenwei, Wu, Chenglong, Huo, Yonghuan, Zhou, Xin, Zheng, Zhiyong, Wang, Xinwen, Chen, Yu

Issue&Volume: 2024-09-26

Abstract: The high pixel resolution is emerging as one of the key parameters for the next-generation displays. Despite the development of various quantum dot (QD) patterning techniques, achieving ultrahigh-resolution (>10,000 pixels per inch (PPI)) and high-fidelity QD patterns is still a tough challenge that needs to be addressed urgently. Here, we propose a novel and effective approach of orthogonal electric field-induced template-assisted dielectric electrophoretic deposition to successfully achieve one of the highest pixel resolutions of 23090 (PPI) with a high fidelity of up to 99%. Meanwhile, the proposed strategy is compatible with the preparation of QD pixels based on perovskite CsPbBr3 and conventional CdSe QDs, exhibiting a wide applicability for QD pixel fabrication. Notably, we further demonstrate the great value of our approach to achieve efficiently electroluminescent QD pixels with a peak external quantum efficiency of 16.5%. Consequently, this work provides a general approach for realizing ultrahigh-resolution and high-fidelity patterns based on various QDs and a novel method for fabricating QD-patterned devices with high performance.

DOI: 10.1038/s41377-024-01601-3

Source: https://www.nature.com/articles/s41377-024-01601-3

期刊信息

Light: Science & Applications《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4

官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex