美国杜克大学Alberto Bartesaghi研究小组开发出了MiLoPYP学习框架,可用于自我监督的分子模式挖掘与原位颗粒定位。该项研究成果发表在2024年9月9日出版的《自然—方法学》上。
据悉,低温电子断层扫描允许在纳米范围分辨率,对三维细胞图谱进行常规可视化。当与单粒子断层扫描相结合时,可以在其天然环境中获得频繁发生的大分子的近原子分辨率结构。与冷冻电子断层扫描或单颗粒断层扫描相关的两大主要挑战,是蛋白质的自动识别和定位。
这些任务受到细胞内分子拥挤、冷冻电子断层扫描图像特有的成像畸变,以及断层扫描数据集庞大规模的阻碍。目前的方法准确性低,需要大量和耗时的人工标记,或者仅限于检测特定类型的蛋白质。
该研究组提出了MiLoPYP,这是一个两步数据集特定的基于对比学习的框架,可以实现快速的分子模式挖掘,然后是准确的蛋白质定位。MiLoPYP能够有效地检测和定位广泛的靶标,包括球状和管状复合物以及大的膜蛋白,将有助于简化和扩大高分辨率工作流程的适用性,用于原位结构测定。
附:英文原文
Title: MiLoPYP: self-supervised molecular pattern mining and particle localization in situ
Author: Huang, Qinwen, Zhou, Ye, Bartesaghi, Alberto
Issue&Volume: 2024-09-09
Abstract: Cryo-electron tomography allows the routine visualization of cellular landscapes in three dimensions at nanometer-range resolutions. When combined with single-particle tomography, it is possible to obtain near-atomic resolution structures of frequently occurring macromolecules within their native environment. Two outstanding challenges associated with cryo-electron tomography/single-particle tomography are the automatic identification and localization of proteins, tasks that are hindered by the molecular crowding inside cells, imaging distortions characteristic of cryo-electron tomography tomograms and the sheer size of tomographic datasets. Current methods suffer from low accuracy, demand extensive and time-consuming manual labeling or are limited to the detection of specific types of proteins. Here, we present MiLoPYP, a two-step dataset-specific contrastive learning-based framework that enables fast molecular pattern mining followed by accurate protein localization. MiLoPYP’s ability to effectively detect and localize a wide range of targets including globular and tubular complexes as well as large membrane proteins, will contribute to streamline and broaden the applicability of high-resolution workflows for in situ structure determination.
DOI: 10.1038/s41592-024-02403-6
Source: https://www.nature.com/articles/s41592-024-02403-6
Nature Methods:《自然—方法学》,创刊于2004年。隶属于施普林格·自然出版集团,最新IF:47.99
官方网址:https://www.nature.com/nmeth/
投稿链接:https://mts-nmeth.nature.com/cgi-bin/main.plex