近日,中国科学院金属研究所的孙东明&刘驰及其研究小组与北京大学的张立宁等人合作并取得一项新进展。经过不懈努力,他们研制出基于受热载流子受激发射的热发射极晶体管。相关研究成果已于2024年8月14日在国际权威学术期刊《自然》上发表。
本文报道了一种基于双混合维度石墨烯/锗肖特基结的热发射极晶体管,该晶体管利用热载流子的受激发射,实现了低于玻尔兹曼极限的每十年小于1毫伏的亚阈值摆幅,以及在室温下峰值与谷值电流比大于100的负微分电阻。此外,还进一步展示了具有高反相器增益和可重构逻辑状态的多值逻辑。本研究报道了一种多功能热发射极晶体管,在低功耗和负微分电阻应用方面具有巨大潜力,标志着摩尔时代后的一个有希望的进展。
据悉,热载流子晶体管是一类利用载流子过剩动能的器件。与依赖稳态载流子传输的普通晶体管不同,热载流子晶体管将载流子调制至高能态,从而提高了器件的速度和功能性。这些特性对于需要快速开关和高频操作的应用至关重要,例如先进的电信和尖端计算技术。然而,传统的热载流子产生机制要么是载流子注入,要么是加速,这在功耗和负微分电阻方面限制了器件的性能。混合维度器件结合了体材料和低维材料,可以利用由能带组合形成的各种势垒,为热载流子的产生提供不同的机制。
附:英文原文
Title: A hot-emitter transistor based on stimulated emission of heated carriers
Author: Liu, Chi, Wang, Xin-Zhe, Shen, Cong, Ma, Lai-Peng, Yang, Xu-Qi, Kong, Yue, Ma, Wei, Liang, Yan, Feng, Shun, Wang, Xiao-Yue, Wei, Yu-Ning, Zhu, Xi, Li, Bo, Li, Chang-Ze, Dong, Shi-Chao, Zhang, Li-Ning, Ren, Wen-Cai, Sun, Dong-Ming, Cheng, Hui-Ming
Issue&Volume: 2024-08-14
Abstract: Hot-carrier transistors are a class of devices that leverage the excess kinetic energy of carriers. Unlike regular transistors, which rely on steady-state carrier transport, hot-carrier transistors modulate carriers to high-energy states, resulting in enhanced device speed and functionality. These characteristics are essential for applications that demand rapid switching and high-frequency operations, such as advanced telecommunications and cutting-edge computing technologies. However, the traditional mechanisms of hot-carrier generation are either carrier injection or acceleration, which limit device performance in terms of power consumption and negative differential resistance. Mixed-dimensional devices, which combine bulk and low-dimensional materials, can offer different mechanisms for hot-carrier generation by leveraging the diverse potential barriers formed by energy-band combinations. Here we report a hot-emitter transistor based on double mixed-dimensional graphene/germanium Schottky junctions that uses stimulated emission of heated carriers to achieve a subthreshold swing lower than 1millivolt per decade beyond the Boltzmann limit and a negative differential resistance with a peak-to-valley current ratio greater than 100 at room temperature. Multi-valued logic with a high inverter gain and reconfigurable logic states are further demonstrated. This work reports a multifunctional hot-emitter transistor with significant potential for low-power and negative-differential-resistance applications, marking a promising advancement for the post-Moore era.
DOI: 10.1038/s41586-024-07785-3
Source: https://www.nature.com/articles/s41586-024-07785-3
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html