近日,奥地利科学技术研究所的Andela Šaric及其研究团队取得一项新进展。经过不懈努力,他们揭示致命纤维的自组织及其在细菌分裂环形成中的作用。相关研究成果已于2024年8月12日在国际知名学术期刊《自然—物理学》上发表。
本文表明,踏车行为通过溶解排列错乱的纤维来驱动纤维向列排序。以参与细胞分裂的细菌FtsZ蛋白为例,研究人员证明了这一机制可在体外使FtsZ纤维排列整齐,并驱动活体内枯草芽孢杆菌的分裂环组织。
研究人员发现,通过局部溶解实现排序还允许系统快速响应细胞内的化学和几何偏差,使他们能够定量解释活体内分裂环的形成动力学。除了FtsZ和其他细胞骨架纤维,本研究还确定了通过能量消耗纤维的持续生成和消亡实现自组织的机制。
据悉,细胞内的纤维通常呈现踏车行为。在能量消耗驱动下,纤维的一端生长,而另一端收缩,这使得纤维看起来像是在运动,尽管单个蛋白质保持静止。这一过程是细胞骨架纤维的特征,并导致纤维的整体自组织。
附:英文原文
Title: Self-organization of mortal filaments and its role in bacterial division ring formation
Author: Vanhille-Campos, Christian, Whitley, Kevin D., Radler, Philipp, Loose, Martin, Holden, Samus, Saric, Andela
Issue&Volume: 2024-08-12
Abstract: Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments.
DOI: 10.1038/s41567-024-02597-8
Source: https://www.nature.com/articles/s41567-024-02597-8