浙江大学薛晶晶团队报道了钙钛矿太阳能电池的聚芳族分子接触。相关研究成果发表在2024年7月24日出版的《自然》。
基于分子的选择性接触已成为确保高效倒置钙钛矿太阳能电池的关键行为。这些分子总是由具有杂原子取代的共轭核组成,以提供所需的载流子传输能力。到目前为止,成功的共轭核的设计仅限于两种N-取代的π共轭结构,咔唑和三苯胺,分子优化围绕其衍生物展开。然而,这种杂原子取代结构引起的分子稳定性的伴随限制阻碍了器件寿命的进一步提高。迫切需要一种不牺牲电子性能的更坚固的分子接触,但这仍然是一个挑战。
该文中,研究人员报告了一种没有杂原子取代的环绕稠合多环芳烃核心结构,与传统的杂原子取代核心结构相比,该结构具有更优的载流子传输和选择性。这种核心结构产生了相对化学惰性和结构刚性的分子接触,这大大提高了钙钛矿太阳能电池在效率和耐用性方面的性能。在不同的加速老化测试中,冠军设备的效率高达26.1%,寿命大大延长。
附:英文原文
Title: peri-Fused polyaromatic molecular contacts for perovskite solar cells
Author: Zhao, Ke, Liu, Qingqing, Yao, Libing, Deer, Caner, Shen, Jiahui, Zhang, Xu, Shi, Pengju, Tian, Yuan, Luo, Yixin, Xu, Jiazhe, Zhou, Jingjing, Jin, Donger, Wang, Sisi, Fan, Wei, Zhang, Shaochen, Chu, Shenglong, Wang, Xiaonan, Tian, Liuwen, Liu, Ruzhang, Zhang, Li, Yavuz, Ilhan, Wang, Hong-fei, Yang, Deren, Wang, Rui, Xue, Jingjing
Issue&Volume: 2024-07-24
Abstract: Molecule-based selective contacts have become a crucial component to ensure high-efficiency inverted perovskite solar cells1,2,3,4,5. These molecules always consist of a conjugated core with heteroatom substitution to render the desirable carrier-transport capability6,7,8,9. So far, the design of successful conjugation cores has been limited to two N-substituted π-conjugated structures, carbazole and triphenylamine, with molecular optimization evolving around their derivatives2,5,10,11,12. However, further improvement of the device longevity has been hampered by the concomitant limitations of the molecular stability induced by such heteroatom-substituted structures13,14. A more robust molecular contact without sacrificing the electronic properties is in urgent demand, but remains a challenge. Here we report a peri-fused polyaromatic core structure without heteroatom substitution that yields superior carrier transport and selectivity over conventional heteroatom-substituted core structures. This core structure produced a relatively chemically inert and structurally rigid molecular contact, which considerably improved the performance of perovskite solar cells in terms of both efficiency and durability. The champion device showed an efficiency up to 26.1% with greatly improved longevity under different accelerated-ageing tests.
DOI: 10.1038/s41586-024-07712-6
Source: https://www.nature.com/articles/s41586-024-07712-6
官方网址:http://www.nature.com/