当前位置:科学网首页 > 小柯机器人 >详情
自主上皮细胞簇的几何驱动迁移效率研究
作者:小柯机器人 发布时间:2024/6/23 17:21:45

近日,比利时蒙斯大学的Sylvain Gabriele及其研究小组与奥地利科学技术研究所的Edouard Hannezo等人合作并取得一项新进展。经过不懈努力,他们对自主上皮细胞簇的几何驱动迁移效率进行研究。相关研究成果已于2024年6月19日在国际知名学术期刊《自然—物理学》上发表。

为了攻克这一难题,研究人员在粘附微条纹上培育了原代上皮角质细胞组织,成功构建出了具有清晰几何形态的自主上皮细胞簇。他们发现,这些细胞簇的迁移效率显著受到接触几何形状,以及细胞-细胞接触方向与迁移方向之间关系的强烈影响。通过构建一个活性物质模型,研究人员将速度和极性对齐与运动的接触调节相结合,定量地捕捉了实验数据。

此外,研究人员预测这种规则的组合在复杂几何形状中同样能实现高效的导航,并通过实验验证了这一预测。总之,这项研究结果提供了一个概念框架,用于从主动系统与物理边界的相互作用中提取交互规则,以及复杂微环境中集体导航的设计原则。

据悉,上皮细胞集体通过协调运动的定向迁移在各种生理过程中起着至关重要的作用,并且越来越多地在大融合单层水平上被理解。然而,许多过程依赖于复杂环境中小群极化上皮细胞的迁移,并且它们对外部几何形状的响应仍然知之甚少。

附:英文原文

Title: Geometry-driven migration efficiency of autonomous epithelial cell clusters

Author: Vlercruysse, Elonore, Bruckner, David B., Gmez-Gonzlez, Manuel, Remson, Alexandre, Luciano, Marine, Kalukula, Yohalie, Rossetti, Leone, Trepat, Xavier, Hannezo, Edouard, Gabriele, Sylvain

Issue&Volume: 2024-06-19

Abstract: The directed migration of epithelial cell collectives through coordinated movements plays a crucial role in various physiological processes and is increasingly understood at the level of large confluent monolayers. However, numerous processes rely on the migration of small groups of polarized epithelial clusters in complex environments, and their responses to external geometries remain poorly understood. To address this, we cultivate primary epithelial keratocyte tissues on adhesive microstripes to create autonomous epithelial clusters with well-defined geometries. We show that their migration efficiency is strongly influenced by the contact geometry and the orientation of cell–cell contacts with respect to the direction of migration. A combination of velocity and polarity alignment with contact regulation of locomotion in an active matter model captures quantitatively the experimental data. Furthermore, we predict that this combination of rules enables efficient navigation in complex geometries, which we confirm experimentally. Altogether, our findings provide a conceptual framework for extracting the interaction rules of active systems from their interaction with physical boundaries, as well as design principles for collective navigation in complex microenvironments.

DOI: 10.1038/s41567-024-02532-x

Source: https://www.nature.com/articles/s41567-024-02532-x

期刊信息
Nature Physics:《自然—物理学》,创刊于2005年。隶属于施普林格·自然出版集团,最新IF:19.684