英国曼彻斯特大学Lozada-Hidalgo, M.团队报道了双门控石墨烯中质子输运和氢化的控制。相关研究成果发表在2024年6月19日出版的国际知名学术期刊《自然》。
石墨烯的基面可以作为一种选择性屏障,质子可以渗透,但对所有离子和气体都不可渗透。这刺激了石墨烯在膜、催化和同位素分离等应用中的应用。质子可以化学吸附在石墨烯上并使其氢化,从而诱导导体-绝缘体的转变,这在石墨烯电子器件中得到了深入探索。然而,这两种过程都面临能量障碍,并且已经提出了各种策略来加速质子传输,例如通过引入空位,引入催化金属1或化学功能化晶格。但这些技术可能会损害其他特性,如离子选择性或机械稳定性。
该文中,研究表明,在双栅极石墨烯中,独立控制1Vnm-1左右的电场E和1×1014cm2左右的电荷载流子密度n,可以使质子传输与晶格氢化脱钩,从而加速质子传输,使其接近设备的极限电解质电流。质子传输和氢化可以精确而稳健地选择性驱动,从而实现基于质子的逻辑和记忆石墨烯器件,其开关比跨越几个数量级。结果表明,场效应可以加速和解耦双栅极2D晶体中的电化学过程。
附:英文原文
Title: Control of proton transport and hydrogenation in double-gated graphene
Author: Tong, J., Fu, Y., Domaretskiy, D., Della Pia, F., Dagar, P., Powell, L., Bahamon, D., Huang, S., Xin, B., Costa Filho, R. N., Vega, L. F., Grigorieva, I. V., Peeters, F. M., Michaelides, A., Lozada-Hidalgo, M.
Issue&Volume: 2024-06-19
Abstract: The basal plane of graphene can function as a selective barrier that is permeable to protons1,2 but impermeable to all ions3,4 and gases5,6, stimulating its use in applications such as membranes1,2,7,8, catalysis9,10 and isotope separation11,12. Protons can chemically adsorb on graphene and hydrogenate it13,14, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices13,14,15,16,17. However, both processes face energy barriers1,12,18 and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies4,7,8, incorporating catalytic metals1,19 or chemically functionalizing the lattice18,20. But these techniques can compromise other properties, such as ion selectivity21,22 or mechanical stability23. Here we show that independent control of the electric field, E, at around 1Vnm1, and charge-carrier density, n, at around 1×1014cm2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode–electrolyte interfaces.
DOI: 10.1038/s41586-024-07435-8
Source: https://www.nature.com/articles/s41586-024-07435-8
官方网址:http://www.nature.com/