据研究人员介绍,用于定量重建千年时间尺度季节温度的代用指标和校准模式的缺乏,极大地限制了人们对全新世热变化及其驱动机制的理解。
研究人员采用深度学习神经网络分析方法,建立了两个全球暖季温度模型,分别对表层土壤和湖泊沉积物细菌的支链四醚膜脂进行了分析。研究将这些最优模型应用于覆盖全新世的全球古湖泊、泥炭地和黄土剖面。
所有暖季温度重建结果与气候模式模拟结果一致,表明了自全新世早期以来的降温趋势,主要是由于早期岁差高峰导致北半球太阳辐射减少所致。研究人员进一步证明,膜脂可以有效地增强未来千年季节温度研究,包括冬季温度,而不受地理位置和沉积载体的限制。
附:英文原文
Title: Millennial changes and cooling trends in land surface warm-season temperatures during the Holocene
Author: Yukun Zheng, Hongyan Liu, Hongya Wang, Shucheng Xie, Huan Yang, Siwen Feng, Zeyu Zhang, Wenjie Zhao, Boyi Liang
Issue&Volume: 2024/05/18
Abstract: The scarcity of proxies and calibration models for quantitatively reconstructing millennial timescale seasonal temperature tremendously contrains our understanding of the Holocene thermal variation, and its driven mechanisms. Here, we established two global warm-season temperature models, by applying deep learning neural network analysis to the branched tetraether membrane lipids originating from surface soil and lacustrine sediment bacteria. We utilized these optimal models in global well-dated lacustrine, peatland, and loess profiles covering the Holocene. All reconstructions of warm-season temperatures, consistent with climate model simulations, indicate cooling trends since the early Holocene, primarily induced by decreased solar radiation in the Northern Hemisphere due to the precession peak at the early. We further demonstrated that the membrane lipids can effectively enhance the future millennial seasonal temperature research, including winter temperatures, without being restricted by geographical location and sedimentary carrier.
DOI: 10.1016/j.scib.2024.05.008
Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927324003426
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb