美国约翰霍普金斯大学
研究人员开发了一种基于纳米孔的方法——端粒分析法(Telomere Profiling),以接近单核苷酸的分辨率确定端粒长度。将端粒reads映射到染色体末端的结果显示,染色体末端特异性的长度分布可能相差六千多个碱基。147名个体的端粒长度显示,某些染色体末端持续较长或较短。
在新生儿脐带血中也发现了同样的排列顺序,这表明端粒长度在出生时就已确定,染色体末端特异性端粒长度差异会随着年龄的增长而缩短。Telomere Profiling使端粒长度的精确研究在实验室、临床和药物发现工作中得到广泛应用,并将使人们对端粒生物学有更深入的了解。
据介绍,端粒短会导致与年龄相关的疾病,端粒长则容易致癌;然而,端粒长度的调节机制尚不清楚。
附:英文原文
Title: Human telomere length is chromosome end–specific and conserved across individuals
Author: Kayarash Karimian, Aljona Groot, Vienna Huso, Ramin Kahidi, Kar-Tong Tan, Samantha Sholes, Rebecca Keener, John F. McDyer, Jonathan K. Alder, Heng Li, Andreas Rechtsteiner, Carol W. Greider
Issue&Volume: 2024-04-11
Abstract: Short telomeres cause age-related disease and long telomeres predispose to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, Telomere Profiling, to determine telomere length at nearly single nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end–specific length distributions that could differ by more than six kilobases. Telomere lengths in 147 individuals showed certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and chromosome end–specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.
DOI: ado0431
Source: https://www.science.org/doi/10.1126/science.ado0431