当前位置:科学网首页 > 小柯机器人 >详情
科学家实现用于量子计算的潘宁微阱
作者:小柯机器人 发布时间:2024/3/16 13:29:01

近日,瑞士苏黎世联邦理工学院的Shreyans Jain及其研究团队取得一项新进展。经过不懈努力,他们实现用于量子计算的潘宁微阱。相关研究成果已于2024年3月13日在国际权威学术期刊《自然》上发表。

该研究团队成功实现了一个微制造的潘宁离子阱,通过采用3T磁场替代射频场,有效消除了限制因素。在此基础上,研究人员展示了离子的完全量子控制,并具备了在芯片上方捕获平面上任意输运离子的能力。潘宁微阱方法的这一独特优势为量子电荷耦合器件架构的优化提供了可能,不仅提高了连接性和灵活性,还推动了大规模捕获离子量子计算、量子模拟和量子传感的实现。

据悉,射频阱中捕获离子是实现量子计算机的关键途径之一,因其具备高保真量子门和长相干时间的优势。然而,射频技术的应用也带来了定标方面的多项挑战。具体来说,它需要芯片与高压的兼容,要求有效管理功耗,并限制离子的输运和放置。

附:英文原文

Title: Penning micro-trap for quantum computing

Author: Jain, Shreyans, Sgesser, Tobias, Hrmo, Pavel, Torkzaban, Celeste, Stadler, Martin, Oswald, Robin, Axline, Chris, Bautista-Salvador, Amado, Ospelkaus, Christian, Kienzler, Daniel, Home, Jonathan

Issue&Volume: 2024-03-13

Abstract: Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages, managing power dissipation and restricting transport and placement of ions. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.

DOI: 10.1038/s41586-024-07111-x

Source: https://www.nature.com/articles/s41586-024-07111-x

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html