当前位置:科学网首页 > 小柯机器人 >详情
科学家利用同位素地球化学方法研究土壤二氧化碳动力学过程
作者:小柯机器人 发布时间:2024/3/12 10:39:32

阿根廷应用和环境地球科学研究所Romina, Sanci课题组,使用同位素地球化学方法来研究阿根廷Chaco-Pampean平原部分土壤二氧化碳动力学的过程。这一研究成果发表在2024年3月8日出版的国际学术期刊《地球化学学报》上。

本研究评估了Chaco Pampean平原(阿根廷)不同土壤性质和环境条件(PL和PA单位)下,未受干扰土壤的CO2通量以及植被、有机质和土壤气体的13C/12C比值。各层土壤有机质分解伴随着总有机碳δ13C (δ13C-TOC)值随土层深度的增加而增加。上层土壤剖面δ13C-TOC约ca.0-15 cm为该地区的植物群落约-33到-29‰,而δ13C-TOC在层位A以下变化更大,至约-24‰。土壤δ13C-TOC与土壤δ13C-CO2在较深约50-60cm土层具有相似的值(约-24-26‰)。受扩散过程的影响,表层δ13C-TOC和δ13C-CO2的差异较大(可达-4‰)。

由于大气CO2渗透到土壤空气中,PL和PA单元的A层(约0-20 cm)中的δ13C-CO2值最富集(约-15-17‰)。来源(大气δ13C-CO2和土壤CO2)之间的简单双组分混合模型证实了这一过程。从同位素上看,CO2通量反映了C3植物的生物降解(源)、扩散迁移和CO2交换(大气/土壤)。土壤含水量是扩散过程和地表CO2排放量(12-60 g·m-2·d-1)的决定性因素。利用充气孔隙度参数和土壤氡梯度模型估算的CO2扩散系数证实了这一情况。

据悉,二氧化碳地表排放量的幅度和空间变异性,以及涉及土壤向大气释放二氧化碳的过程是在气候变化背景下的相关问题。

附:英文原文

Title: Processes involving soil CO2 dynamic in a sector of Chaco-Pampean plain, Argentina: An isotope geochemical approach

Author: Romina, Sanci, Hctor, Panarello

Issue&Volume: 2024-03-08

Abstract: The magnitude and spatial variability of CO2 surface emissions and processes involving CO2 released to the atmosphere from the soils are relevant issues in the context of climate change. This work evaluated CO2 fluxes and 13C/12C ratio of vegetation, organic matter, and soil gases from no disturbed soils of Chaco Pampean Plain (Argentina) with different soil properties and environmental conditions (PL and PA units). Soil organic decomposition from individual layers was accompanied by δ13C of total organic carbon (δ13C-TOC) values more enriched to depth. δ13C-TOC values in the upper soil profile ~ ca. 0–15 cm were like the plant community of this area (~-33 to -29 ‰) while δ13C-TOC varied stronger bellow horizon A, till ~ -24‰. Both δ13C-TOC and soil 13C-CO2 were similar (~-24 to 26 ‰) at deeper horizons (~ 50–60 cm). Toward the superficial layers, δ13C-TOC and δ13C-CO2 showed more differences (till ~ 4 ‰), due influence of the diffusion process. Horizon A layer (~ 0–20 cm) from both PL and PA units contained the most enriched δ13C-CO2 values (~-15–17 ‰) because atmospheric CO2 permeated the soil air. A simple two-component mixing model between sources (atmospheric δ13C-CO2 and soil CO2) confirmed that process. Isotopically, CO2 fluxes reflected the biodegradation of C3 plants (source), diffusive transport, and CO2 exchange (atmosphere/soil). Soil moisture content appeared as a determining factor in the diffusion process and the magnitude of CO2 surface emissions (12–60 g·m-2·d-1). That condition was confirmed by CO2 diffusion coefficients estimated by air-filled porosity parameters and soil radon gradient model.

DOI: 10.1007/s11631-024-00678-2

Source: https://link.springer.com/article/10.1007/s11631-024-00678-2

期刊信息

Acta Geochimica《地球化学学报》,创刊于1982年。隶属于施普林格·自然出版集团,最新IF:1.6

官方网址:https://link.springer.com/journal/11631
投稿链接:https://www2.cloud.editorialmanager.com/cjog/default2.aspx