当前位置:科学网首页 > 小柯机器人 >详情
科学家发现可调谐的VO2腔能够实现从可见到微波频率的多光谱操纵
作者:小柯机器人 发布时间:2024/2/23 13:34:24

近日,哈尔滨工业大学的李垚&豆书亮及其研究小组与新加坡国立大学的Cheng-Wei Qiu等人合作并取得一项新进展。经过不懈努力,他们发现可调谐的VO2腔能够实现从可见到微波频率的多光谱操纵。相关研究成果已于2024年2月21日在国际知名学术期刊《光:科学与应用》上发表果。

在本文中,研究人员创新性地提出了一种方法,将多个可调谐光学腔与选择性透明层相结合,从而有效克服了波长依赖性,并构建了一个具有高度集成功能的多光谱平台。以此为基础,他们选用了典型的相变材料二氧化钒进行实验,成功实现了覆盖400nm至3cm宽光谱范围的快速响应(0.9s)和可逆操作。该研究平台的核心是一个基于二氧化钒的串联Fabry–Pérot(F-P)腔,它能够根据需求独立定制目标波段的光学响应。

这一创新设计不仅在可见光区域内展现出卓越的宽带变色能力(谐振波长偏移达约60nm),还能在红外至微波区域内灵活切换透射率、反射率和吸收率三种典型光学模式,并具备超过0.7的显著可调幅度。这项工作代表了多光谱光学和材料科学的最新进展,为扩展光学系统的多光谱操纵能力提供了关键方法。

据悉,能够动态操控电磁波的光学材料已成为存储器、光调制器和热管理等领域的新兴研究方向。这类材料的多光谱设计备受瞩目,旨在提升其效率和功能集成度,以满足不断增长的应用需求。然而,实现这些材料的多光谱操控面临一定挑战,主要是由于它们普遍存在的波长依赖性,这限制了它们在窄波长范围内的应用能力。

附:英文原文

Title: Tunable VO2 cavity enables multispectral manipulation from visible to microwave frequencies

Author: Wei, Hang, Gu, Jinxin, Zhao, Tao, Yan, Zhiyuan, Xu, He-Xiu, Dou, Shuliang, Qiu, Cheng-Wei, Li, Yao

Issue&Volume: 2024-02-21

Abstract: Optical materials capable of dynamically manipulating electromagnetic waves are an emerging field in memories, optical modulators, and thermal management. Recently, their multispectral design preliminarily attracts much attention, aiming to enhance their efficiency and integration of functionalities. However, the multispectral manipulation based on these materials is challenging due to their ubiquitous wavelength dependence restricting their capacity to narrow wavelengths. In this article, we cascade multiple tunable optical cavities with selective-transparent layers, enabling a universal approach to overcoming wavelength dependence and establishing a multispectral platform with highly integrated functions. Based on it, we demonstrate the multispectral (ranging from 400nm to 3cm), fast response speed (0.9s), and reversible manipulation based on a typical phase change material, vanadium dioxide. Our platform involves tandem VO2-based Fabry–Pérot (F-P) cavities enabling the customization of optical responses at target bands independently. It can achieve broadband color-changing capacity in the visible region (a shift of ~60nm in resonant wavelength) and is capable of freely switching between three typical optical models (transmittance, reflectance, and absorptance) in the infrared to microwave regions with drastic amplitude tunability exceeding 0.7. This work represents a state-of-art advance in multispectral optics and material science, providing a critical approach for expanding the multispectral manipulation ability of optical systems.

DOI: 10.1038/s41377-024-01400-w

Source: https://www.nature.com/articles/s41377-024-01400-w

期刊信息

Light: Science & Applications《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4

官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex