德国哥廷根大学
通过多相催化剂加速反应活性的原子尺度结构,通常只在高温高压的反应条件下形成,这使得它们不能用低温、超高真空的方法观察到。
有鉴于此,研究小组提出了在广泛的表面浓度和高温下,钯催化氢氧化的速度分辨动力学测量。速率表现出对氧覆盖和步骤密度的复杂依赖,这可以用密度泛函和基于过渡态理论的动力学模型来定量解释,该模型涉及至少三个氧原子在步骤中的协同稳定构型。
两个氧原子将第三个氧原子吸引到附近的结合位点,从而产生比孤立氧原子活性强得多的活性结构。因此,钯上的氢氧化为如何在工作催化剂上增强反应性,提供了一个清晰的例子。
附:英文原文
Title: Cooperative adsorbate binding catalyzes high-temperature hydrogen oxidation on palladium
Author: Michael Schwarzer, Dmitriy Borodin, Yingqi Wang, Jan Fingerhut, Theofanis N. Kitsopoulos, Daniel J. Auerbach, Hua Guo, Alec M. Wodtke
Issue&Volume: 2024-11-01
Abstract: Atomic-scale structures that account for the acceleration of reactivity by heterogeneous catalysts often form only under reaction conditions of high temperatures and pressures, making them impossible to observe with low-temperature, ultra-high-vacuum methods. We present velocity-resolved kinetics measurements for catalytic hydrogen oxidation on palladium over a wide range of surface concentrations and at high temperatures. The rates exhibit a complex dependence on oxygen coverage and step density, which can be quantitatively explained by a density functional and transition-state theory–based kinetic model involving a cooperatively stabilized configuration of at least three oxygen atoms at steps. Here, two oxygen atoms recruit a third oxygen atom to a nearby binding site to produce an active configuration that is far more reactive than isolated oxygen atoms. Thus, hydrogen oxidation on palladium provides a clear example of how reactivity can be enhanced on a working catalyst.
DOI: adk1334
Source: https://www.science.org/doi/10.1126/science.adk1334
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login