太阳能驱动的二氧化碳和水整体转化为燃料和化学品,显示了碳中和的最终战略,但仍然是一个巨大的挑战。
该文探索了Zn NPs/GaN纳米线(NW)/Si的集成光催化氧化还原架构,用于在没有任何外部牺牲剂和添加剂的情况下,将CO2和H2O同时光驱动整体转化为CH4和H2O2。所设计的架构提供了189 mmol gcat-1 h-1的基准CH4活性,选择性高达93.6%,以25 mmol g-1 h-1的可观速率同步形成H2O2。
此外,在80小时的长期运行中,每摩尔锌实现了27280摩尔CH4的相当大的周转数。通过操作光谱表征、同位素实验和密度泛函理论计算,揭示了锌位点与GaN协同作用,以0.27 eV的较低能量势垒驱动CO2到CH4的转化,同时以0.93 eV的相对较高能量势垒抑制析氢反应。
值得注意的是,由于GaN的独特表面性质,水被分解为*OH和*h,随后形成H2O2,因为Zn NPs对*OH的吸附强度减轻。总之,分层架构能够实现CH4的高活性和高选择性,同时从蒸馏水中的CO2还原中产生H2O2。
该项工作提供了一种集成的光催化氧化还原架构,用于在仅输入CO2、蒸馏水和光的情况下同步生产CH4和H2O2。
附:英文原文
Title: An integrated photocatalytic redox architecture for simultaneous overall conversion of CO2 and H2O toward CH4 and H2O2
Author: Jun Song c, Ping Wang b, Xinqiang Wang b e f, Baowen Zhou a
Issue&Volume: 2024/11/19
Abstract: Solar-driven overall conversion of CO2 and H2O into fuels and chemicals shows an ultimate strategy for carbon neutrality yet remains a huge challenge. Herein, an integrated photocatalytic redox architecture of Zn NPs/GaN Nanowires (NWs)/Si is explored for light-driven overall conversion of CO2 and H2O into CH4 and H2O2 simultaneously without any external sacrificial agents and additives. The as-designed architecture affords a benchmark CH4 activity of 189 mmol gcat1 h1 with a high selectivity of 93.6%, in the synchronized formation of H2O2 at a considerable rate of 25 mmol g1 h1. Moreover, a considerable turnover number of 27,280 mol CH4 per mol Zn was achieved over a long-term operation of 80 h. By operando spectroscopic characterizations, isotope experiments, and density functional theory calculations, it is unraveled that Zn sites are synergetic with GaN to drive CO2-to-CH4 conversion with a lowered energy barrier of 0.27 eV while inhibiting hydrogen evolution reaction with a relatively high energy barrier of 0.93 eV. Notably, owing to the unique surface properties of GaN, water is split into *OH and *H, followed by the formation of H2O2 because of the alleviated adsorption strength of *OH by Zn NPs. Together, the hierarchical architecture enables the achievement of high activity and high selectivity of CH4 from CO2 reduction in distilled water along with the generation of H2O2. This work provides an integrated photocatalytic redox architecture for the synchronized production of CH4 and H2O2 with the only inputs of CO2, distilled water, and light.
DOI: 10.1016/j.scib.2024.11.021
Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927324008272
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb