据悉,尽管量子化激发之间的强非线性相互作用,是基于玻色子振荡器模式的量子技术的重要资源,但大多数电磁和机械非线性相互作用都太弱,无法在单量子层面观察到非线性效应。这一限制在电磁谐振器中已得到克服,方法是将它们与其他强非线性量子系统(如原子和超导量子比特)相耦合。
该研究团队在一个固态机械系统中实现了单声子非线性状态。在该系统中,单声子的非谐性超过了退相干速率的6.8倍,这使得研究人员能够将其作为机械量子比特,并实现初始化、读出和单量子比特门操作。这一方法为量子模拟、传感和信息处理提供了一个强大的量子声学平台。
附:英文原文
Title: A mechanical qubit
Author: Yu Yang, Igor Kladari, Maxwell Drimmer, Uwe von Lüpke, Daan Lenterman, Joost Bus, Stefano Marti, Matteo Fadel, Yiwen Chu
Issue&Volume: 2024-11-15
Abstract: Although strong nonlinear interactions between quantized excitations are an important resource for quantum technologies based on bosonic oscillator modes, most electromagnetic and mechanical nonlinearities are far too weak to allow for nonlinear effects to be observed at the single-quantum level. This limitation has been overcome in electromagnetic resonators by coupling them to other strongly nonlinear quantum systems such as atoms and superconducting qubits. We demonstrate the realization of the single-phonon nonlinear regime in a solid-state mechanical system. The single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8, allowing us to use it as a mechanical qubit and demonstrate initialization, readout, and single-qubit gates. Our approach provides a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.
Source: https://www.science.org/doi/10.1126/science.adr2464