近日,美国加州大学伯克利分校
据悉,碳捕获可以减少定点二氧化碳(CO2)的排放,但仍然存在阻碍胺基技术广泛采用的障碍。在接近许多工业废气流(>200°C)的温度下捕获二氧化碳是一个有趣的问题,尽管在这些温度下工作的金属氧化物吸收剂通常表现出,缓慢的二氧化碳吸收动力学和循环不稳定性。
该课题组报道了一种多孔金属有机框架,其末端氢化锌位点在200°C以上的温度下可逆地结合二氧化碳,这对于本质上多孔的材料来说是前所未有的。气体吸附、结构、光谱和计算分析阐明了这种转化的快速、可逆性质。延长循环和突破性分析表明,该材料能够在低二氧化碳浓度和与燃烧后捕获相关的高温下,进行深度碳捕获。
附:英文原文
Title: High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites
Author: Rachel C. Rohde, Kurtis M. Carsch, Matthew N. Dods, Henry Z. H. Jiang, Alexandra R. McIsaac, Ryan A. Klein, Hyunchul Kwon, Sarah L. Karstens, Yang Wang, Adrian J. Huang, Jordan W. Taylor, Yuto Yabuuchi, Nikolay V. Tkachenko, Katie R. Meihaus, Hiroyasu Furukawa, Danielle R. Yahne, Kaitlyn E. Engler, Karen C. Bustillo, Andrew M. Minor, Jeffrey A. Reimer, Martin Head-Gordon, Craig M. Brown, Jeffrey R. Long
Issue&Volume: 2024-11-15
Abstract: Carbon capture can mitigate point-source carbon dioxide (CO2) emissions, but hurdles remain that impede the widespread adoption of amine-based technologies. Capturing CO2 at temperatures closer to those of many industrial exhaust streams (>200°C) is of interest, although metal oxide absorbents that operate at these temperatures typically exhibit sluggish CO2 absorption kinetics and instability to cycling. Here, we report a porous metal–organic framework featuring terminal zinc hydride sites that reversibly bind CO2 at temperatures above 200°C—conditions that are unprecedented for intrinsically porous materials. Gas adsorption, structural, spectroscopic, and computational analyses elucidate the rapid, reversible nature of this transformation. Extended cycling and breakthrough analyses reveal that the material is capable of deep carbon capture at low CO2 concentrations and high temperatures relevant to postcombustion capture.
DOI: adk5697
Source: https://www.science.org/doi/10.1126/science.adk5697
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login