美国加州大学旧金山分校Allan I. Basbaum课题组,实现清醒行为小鼠脊髓的长期光学成像。2024年11月12日,《自然—方法学》杂志在线发表了这项成果。
研究人员表示,光学成像和荧光生物传感器的进展使得在清醒动物的大脑中,研究时空和长期神经动力学成为可能。然而,方法学困难和纤维化限制了脊髓领域的类似进展。
为克服这些障碍,研究人员结合了抑制纤维化的氟聚合物膜的体内应用、重新设计的可植入脊髓成像室和改进的运动修正方法,从而实现了对清醒行为小鼠脊髓的长期成像,最长可持续数月甚至一年以上。研究人员展示了监测轴突的强大能力,识别了脊髓的体感地图。
研究人员在自由活动的小鼠中进行了为期数月的成像,进行疼痛刺激下的行为小鼠Ca2+成像,并观察到神经损伤后的微胶质细胞变化。将体内成像与行为结合在脊髓水平进行研究,将推动对这一关键体感传递到大脑位置的深入理解。
附:英文原文
Title: Long-term optical imaging of the spinal cord in awake behaving mice
Author: Ahanonu, Biafra, Crowther, Andrew, Kania, Artur, Rosa-Casillas, Mariela, Basbaum, Allan I.
Issue&Volume: 2024-11-12
Abstract: Advances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year. We demonstrated a robust ability to monitor axons, identified a spinal cord somatotopic map, performed months-long imaging in freely moving mice, conducted Ca2+ imaging of neural dynamics in behaving mice responding to pain-provoking stimuli and observed persistent microglial changes after nerve injury. The ability to couple in vivo imaging and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.
DOI: 10.1038/s41592-024-02476-3
Source: https://www.nature.com/articles/s41592-024-02476-3
Nature Methods:《自然—方法学》,创刊于2004年。隶属于施普林格·自然出版集团,最新IF:47.99
官方网址:https://www.nature.com/nmeth/
投稿链接:https://mts-nmeth.nature.com/cgi-bin/main.plex