中国地质大学黄洪伟团队报道了在Bi2WO6纳米片上选择性外延生长Cu晶体以实现界面晶格匹配,用于高效的CO2光还原制备太阳能燃料。相关研究成果发表在2024年10月27日出版的《德国应用化学》。
光催化CO2还原是生产高附加值太阳能燃料的重要技术;然而,它通常受到界面电荷输运的限制。
为了解决这一局限性,通过两步水热串联合成策略设计了一种具有高度连接和匹配界面晶格的二维/二维(2D/2D)p-n异质结CuS-Bi2WO6(CS-BWO)。CuS与BWO的集成创造了一个强大的界面电场,并由于功函数差异提供了快速的电荷转移通道,以及高度连接和匹配的界面晶格。p-n异质结促进了电子从Cu位点转移到Bi位点,导致Bi位点具有高电子密度和低氧化态的配位。
BWO纳米片中的Bi位点促进了CO2的吸附和活化,并产生了高覆盖率的关键中间体b-CO32-,而宽集光CuS(CS)提供了丰富的光诱导电子,这些电子被注入BWO的导带,用于CO2的光还原反应。值得注意的是,p-n异质结CS-BWO的CO和CH4产量分别为135.7和62.5μmol g-1,显著高于CS、BWO和物理混合物CS-BWO纳米片。
该项工作为开发将二氧化碳转化为增值太阳能燃料的高活性异质结光催化剂,提供了一种创新的设计策略。
附:英文原文
Title: Enabling Interfacial Lattice Matching by Selective Epitaxial Growth of CuS Crystals on Bi2WO6 Nanosheets for Efficient CO2 Photoreduction into Solar Fuels
Author: Jiaqi Tian, Yangyang Zhang, Zuhao Shi, Zhongyi Liu, Zaiwang Zhao, Jun Li, Neng Li, Hongwei Huang
Issue&Volume: 2024-10-27
Abstract: Photocatalytic CO2 reduction serves as an important technology for value-added solar fuel production; however, it is generally limited by interfacial charge transport. To address this limitation, a two-dimensional/two-dimensional (2D/2D) p-n heterojunction CuS-Bi2WO6 (CS-BWO) with highly connected and matched interfacial lattices was designed via a two-step hydrothermal tandem synthesis strategy. The integration of CuS with BWO created a robust interface electric eld and provided fast charge transfer channels due to the work function difference, as well as highly connected and matched interfacial lattices. The p-n heterojunction promoted electron transfer from the Cu to Bi sites, leading to coordination of Bi sites with high electronic density and low oxidation state. The Bi sites in BWO nanosheets facilitated the adsorption and activation of CO2, and generation of high-coverage key intermediate b-CO32-, while broad light-harvesting CuS (CS) provide abundant photoinduced electrons that were injected into the conduction band of BWO for CO2 photoreduction reaction. Remarkably, the p-n heterojunction CS-BWO exhibited CO and CH4 yields of 135.7 and 62.5 μmol g-1, respectively, which were significantly higher than those of CS, BWO, and physical mixture CS-BWO nanosheets. This work provided an innovative design strategy for developing high-activity heterojunction photocatalyst for converting CO2 into value-added solar fuels.
DOI: 10.1002/anie.202418496
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202418496
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx