近日,德国柏林洪堡大学的Valentina Forini及其研究团队取得一项新进展。经过不懈努力,他们从一维CFT中洛伦兹反演推导出色散关系。相关研究成果已于2024年10月24日在国际知名学术期刊《高能物理杂志》上发表。
该研究团队从洛伦兹反演公式出发,推导出一个色散关系,该关系通过对其双重不连续性的积分来计算一维共形场论(CFT)中的四点函数。
对于具有整数或半整数标度维数的相同算符的情况,研究人员明确给出了积分的交叉对称核。这一推导补充了使用解析泛函的推导方法。
研究人员利用该色散关系来评估定义在平面N=4超杨-米尔斯理论半BPS威尔逊线上的全息关联函数,并在大't Hooft耦合展开中重现了直至四阶的结果。
附:英文原文
Title: Dispersion relation from Lorentzian inversion in 1d CFT
Author: Bonomi, Davide, Forini, Valentina
Issue&Volume: 2024-10-24
Abstract: Starting from the Lorentzian inversion formula, we derive a dispersion relation which computes a four-point function in 1d CFTs as an integral over its double discontinuity. The crossing symmetric kernel of the integral is given explicitly for the case of identical operators with integer or half-integer scaling dimension. This derivation complements the one that uses analytic functionals. We use the dispersion relation to evaluate holographic correlators defined on the half-BPS Wilson line of planar N = 4 super Yang-Mills, reproducing results up to fourth order in an expansion at large t’Hooft coupling.
DOI: 10.1007/JHEP10(2024)181
Source: https://link.springer.com/article/10.1007/JHEP10(2024)181