近日,法国巴黎萨克雷大学的Shaun D. Hampton及其研究团队取得一项新进展。经过不懈努力,他们揭示了对称轨形共形场论中的自举多缠绕扭曲效应。相关研究成果已于2024年10月16日在国际知名学术期刊《高能物理杂志》上发表。
该研究团队研究了二维对称轨道共形场论(CFT)中扭曲-2算符的影响。扭曲算符能够将一个扭曲-M态和一个扭曲-N态结合,生成一个扭曲-(M + N)态。这一过程包含三种效应:成对产生、传播和收缩。研究人员利用玻戈留波夫试探解和共形对称性来研究这些效应。
在这种多缠绕的情形下,与先前M = N = 1的研究不同,成对产生不再与传播相分离。研究人员推导了这些效应的方程,它们自身组织成递归关系和约束条件。利用递归关系,研究人员可以通过有限数量的输入来确定这些效应中无限数量的系数。
此外,通过应用约束条件,可以进一步减少所需输入的数量。
附:英文原文
Title: Bootstrapping multi-wound twist effects in symmetric orbifold CFTs
Author: Guo, Bin, Hampton, Shaun D.
Issue&Volume: 2024-10-16
Abstract: We investigate the effects of the twist-2 operator in 2D symmetric orbifold CFTs. The twist operator can join together a twist-M state and a twist-N state, creating a twist-(M + N) state. This process involves three effects: pair creation, propagation, and contraction. We study these effects by using a Bogoliubov ansatz and conformal symmetry. In this multi-wound scenario, pair creation no longer decouples from propagation, in contrast to the previous study where M = N = 1. We derive equations for these effects, which organize themselves into recursion relations and constraints. Using the recursion relations, we can determine the infinite number of coefficients in the effects through a finite number of inputs. Moreover, the number of required inputs can be further reduced by applying constraints.
DOI: 10.1007/JHEP10(2024)117
Source: https://link.springer.com/article/10.1007/JHEP10(2024)117