近日,南方科技大学的刘召军等人合作并取得一项新进展。经过不懈努力,他们研制出用于无掩模光刻的高功率氮化铝镓深紫外微发光二极管显示器。相关研究成果已于2024年10月15日在国际知名学术期刊《自然—光子学》上发表。
开发具有足够功率的氮化铝镓深紫外(UVC)微型发光二极管(micro-LEDs)一直是一项挑战,这极大地限制了这些器件在多种应用中的使用。然而,现已开发出先进的制造工艺,成功展示了高效率的270纳米UVC micro-LEDs以及适用于无掩模光刻的高分辨率大型UVC micro-LED显示屏。
为评估这些新兴器件,该研究团队对尺寸为3微米至100微米的UVC micro-LEDs进行了光学和电学特性测试。其中,3微米器件创下了5.7%的峰值外量子效率记录,并实现了396瓦每平方厘米的最大亮度。此外,具有后端反射层的2540像素每英寸并联连接的UVC micro-LED阵列展现出均匀的发光性和准直性。
专为无掩模光刻应用设计的320×140分辨率UVC micro-LED显示屏,采用了定制集成电路驱动器以实现最佳性能。由于电流扩展均匀性增强、热分散性能提升以及光提取效率优化,UVC micro-LEDs和UVC微型显示屏能够在数秒内提供足够的剂量,完全曝光光刻胶薄膜。此研究可能为无掩模光刻开辟新路径,有望引领半导体行业的革命性发展。
附:英文原文
Title: High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography
Author: Feng, Feng, Liu, Yibo, Zhang, Ke, Yang, Hang, Hyun, Byung-Ryool, Xu, Ke, Kwok, Hoi-Sing, Liu, Zhaojun
Issue&Volume: 2024-10-15
Abstract: Developing aluminium gallium nitride deep-ultraviolet (UVC) micro-light-emitting diodes (micro-LEDs) with sufficient power has been a challenge, which particularly limits these devices to various applications. However, advanced fabrication processes have been developed to enable the demonstration of highly efficient 270nm UVC micro-LEDs and large-format UVC micro-LED displays with high resolution for maskless photolithography. Optical and electrical characterizations were performed on UVC micro-LEDs with sizes ranging from 3μm to 100μm to evaluate these emerging devices. The 3μm device achieved a record-high peak external quantum efficiency of 5.7% and a maximum brightness of 396Wcm–2. Moreover, 2,540pixels per inch parallel-connected UVC micro-LED arrays featuring rear-side reflection layers exhibited emission uniformity and collimation. UVC micro-LED displays, with a resolution of 320×140, were explicitly designed for maskless photolithography applications utilizing a customized integrated circuit driver for optimal performance. The UVC micro-LEDs and UVC micro-displays provide sufficient doses to fully expose the photoresist film within seconds, owing to their enhanced current spreading uniformity, improved heat dispersion and superior light extraction efficiency. This work may open a path to maskless photolithography, potentially leading to revolutionary developments in the semiconductor industry.
DOI: 10.1038/s41566-024-01551-7
Source: https://www.nature.com/articles/s41566-024-01551-7