华南师范大学兰亚乾团队开发出了用于人工光合低浓度CO2还原的基于双金属盐的共价有机框架。相关研究成果于2024年10月7日发表在《德国应用化学》。
利用人工光合技术直接转化烟气中的二氧化碳,是一种有前景的二氧化碳资源利用绿色方法。然而,由于光催化剂在低浓度的CO2气氛中的活性降低,实现有效减少烟气中的CO2仍然是一个巨大的挑战。
该文中,研究人员设计并合成了一系列基于双金属Salen的共价有机框架(MM-Salen-COFs,M:Zn,Ni,Cu),用于人工光合低浓度CO2还原,并证实了它们与单金属M-Salen-COFs相比的优势。结果表明,在纯CO2气氛下,具有双Zn位点的ZnZn-Salen COF表现出显著的,可见光驱动CO2到CO的转化率为150.9μmol g-1 h-1,比单金属Zn-Salen-COF高出约6倍。
值得注意的是,在模拟烟气条件(15%CO2)的低浓度CO2气氛下,双金属Zn Zn-Salen COF仍然显示出102.1μmol g-1 h-1的有效CO2转化活性,这在相同反应条件下COF和MOF基光催化剂中是创纪录的高活性。进一步的研究和理论计算表明,ZnZn-Salen COF中相邻双金属位点之间的协同效应促进了低浓度CO2的吸附和活化,从而降低了速率决定步骤的能量势垒。
附:英文原文
Title: Dual Metallosalen-based Covalent Organic Frameworks for Artificial Photosynthetic Diluted CO2 Reduction
Author: Hong Dong, Liang Fang, Ke-Xin Chen, Jian-Xin Wei, Jia-Xin Li, Xiu Qiao, Ya Wang, Feng-Ming Zhang, Ya-Qian Lan
Issue&Volume: 2024-10-07
Abstract: Directly converting CO2 in flue gas using artificial photosynthetic technology represents a promising green approach for CO2 resource utilization. However, it remains a great challenge to achieve efficient reduction of CO2 from flue gas due to the decreased activity of photocatalysts in diluted CO2 atmosphere. Herein, we designed and synthesized a series of dual metallosalen-based covalent organic frameworks (MM-Salen-COFs, M: Zn, Ni, Cu) for artificial photosynthetic diluted CO2 reduction and confirmed their advantage in comparison to that of single metal M-Salen-COFs. As a results, the ZnZn-Salen-COF with dual Zn sites exhibits a prominent visible-light-driven CO2-to-CO conversion rate of 150.9 μmol g1 h1 under pure CO2 atmosphere, which is ~6 times higher than that of single metal Zn-Salen-COF. Notably, the dual metal ZnZn-Salen-COF still displays efficient CO2 conversion activity of 102.1 μmol g1 h1 under diluted CO2 atmosphere from simulated flue gas conditions (15% CO2), which is a record high activity among COFs- and MOFs-based photocatalysts under the same reaction conditions. Further investigations and theoretical calculations suggest that the synergistic effect between the neighboring dual metal sites in the ZnZn-Salen-COF facilitates low concentration CO2 adsorption and activation, thereby lowering the energy barrier of the rate-determining step.
DOI: 10.1002/anie.202414287
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202414287
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx