北京理工大学陈文星团队报道了氮掺杂超薄碳纳米片复合Ru1Co单原子合金催化剂的电化学析氧性能。相关研究成果发表在2023年12月29日出版的《中国化学》。
能源转型迫在眉睫,其中氢能是重要的新能源之一。而性能优异的析氧反应催化剂是提高电解水析氢速率的关键。单原子合金(SAA)由于部分降低了成本并结合了单原子催化剂(SAC)和合金催化剂的优点而引起了人们的极大关注。
该文中,研究人员设计了一种基于混合和干燥过程的高效热解策略,以锚定与分散在氮掺杂超薄碳纳米片(Ru1Co-SAA/NC)上的Ru单原子结合的超小Co团簇颗粒。所制备的电催化剂具有优异的OER活性和优异的稳定性,在0.5M H2SO4中,当电流密度为10mA cm-2时,OER的过电位为238mV。利用原位XAS来检测OER过程中Ru位点的氧化状态。
总之,这种方法通过单原子合金催化剂的设计实现了成本降低和效率提高,为清洁能源的结构转型提供了新的前景。
附:英文原文
Title: Electrochemical oxygen evolution performance of nitrogen-doped ultra-thin carbon nanosheets composite Ru1Co single atom alloy catalysts
Author: Ziwei Deng, Zhiyi Sun, Yaqiong Li, Jiajing Pei, Wenxing Chen
Issue&Volume: 2023-12-29
Abstract: Energy transformation is imminent, and hydrogen energy is one of the important new energy sources. And oxygen evolution reaction (OER) catalyst with excellent performance is key to improving the hydrogen evolution rate during the electrolysis of water. Single atom alloy (SAA) has garnered significant attention because it partially reduces costs and combines the advantages of both single-atom catalyst (SAC) and alloy catalyst. Herein, an efficient pyrolysis strategy based on a mixing and drying process is designed to anchor ultra-small Co cluster particles, combined with Ru single atoms dispersed on nitrogen-doped ultra-thin carbon nanosheets (Ru1Co SAA/NC). The prepared electrocatalyst exhibits superior OER activity and superb stability, demonstrating an overpotential of 238 mV for OER with a current density of 10 mA cm-2 in 0.5 M H2SO4. And we also utilized In-situ XAS to detect the oxidation state of Ru sites during OER. All in all, this method achieves cost reductions and efficiency improvements through the design of single-atom alloy catalysts, offering new prospects for the structural transformation of clean energy.
DOI: 10.1002/cjoc.202300613
Source: https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202300613
Chinese Journal of Chemistry:《中国化学》,创刊于1983年。隶属于Wiley,最新IF:5.4
官方网址:https://onlinelibrary.wiley.com/journal/16147065
投稿链接:https://mc.manuscriptcentral.com/cjoc