近日,美国芝加哥大学的Changhun Oh及其研究团队取得一项新进展。经过不懈努力,他们提出分子振动谱的量子启发经典算法。相关研究成果已于2024年1月10日在国际知名学术期刊《自然—物理学》上发表。
然而,该研究团队提出了一种有效的量子启发经典算法,用于计算具有谐波势的分子振动谱。利用该方法,可以精确地求解高斯玻色子采样对应的零温度分子振动谱问题。因此,研究人员认为这些问题并不适合作为量子优势的候选者。为了进一步探讨分子振动谱问题的量子优势,研究人员提供了一个更一般的分子振动谱问题,该问题同样具有化学动机,并且该研究提出的方法无法有效求解。这表明,对于这类问题,量子算法可能具有优势,可以利用玻色子采样器来解决。
据悉,近年来,人们利用超导量子比特器件中的随机电路采样和量子光学实验中的高斯玻色子采样等采样问题,提出了量子优势的合理主张。然而,目前的主要工作方向是引导潜在的量子优势解决实际应用问题,而不仅仅是原理证明实验。近年来,人们发现高斯玻色子采样器可以有效地模拟分子振动谱,这是分析化学成分和研究分子结构的重要工具。而最著名的经典算法在计算分子光谱时,其系统大小是指数级的,因此高效的量子算法可以代表计算优势。
附:英文原文
Title: Quantum-inspired classical algorithms for molecular vibronic spectra
Author: Oh, Changhun, Lim, Youngrong, Wong, Yat, Fefferman, Bill, Jiang, Liang
Issue&Volume: 2024-01-10
Abstract: Plausible claims for quantum advantage have been made using sampling problems such as random circuit sampling in superconducting qubit devices, and Gaussian boson sampling in quantum optics experiments. Now, the major next step is to channel the potential quantum advantage to solve practical applications rather than proof-of-principle experiments. It has recently been proposed that a Gaussian boson sampler can efficiently generate molecular vibronic spectra, which are an important tool for analysing chemical components and studying molecular structures. The best-known classical algorithm for calculating the molecular spectra scales super-exponentially in the system size. Therefore, an efficient quantum algorithm could represent a computational advantage. However, here we propose an efficient quantum-inspired classical algorithm for molecular vibronic spectra with harmonic potentials. Using our method, the zero-temperature molecular vibronic spectra problems that correspond to Gaussian boson sampling can be exactly solved. Consequently, we demonstrate that those problems are not candidates for quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well motivated, for which our method does not work and so might be able to take advantage of a boson sampler.
DOI: 10.1038/s41567-023-02308-9
Source: https://www.nature.com/articles/s41567-023-02308-9