当前位置:科学网首页 > 小柯机器人 >详情
扣带回动态追踪深部脑刺激治疗抑郁症的康复情况
作者:小柯机器人 发布时间:2023/9/24 21:38:27

美国佐治亚理工学院Christopher J. Rozell等研究人员合作发现,扣带回动态追踪深部脑刺激治疗抑郁症的康复情况。相关论文于2023年9月20日在线发表在《自然》杂志上。

研究人员表示,对丘脑扣带回下(SCC)进行深部脑刺激(DBS)可长期缓解治疗耐药抑郁症(TRD)的症状。然而,实现稳定的康复是不可预测的,由于个体的康复轨迹和主观症状报告,通常需要对刺激进行反复调整。目前,人们缺乏客观的脑部生物标志物来区分自然的短暂情绪波动和需要干预的情况,从而指导临床决策。

为了弥补这一不足,研究人员使用了一种可记录电生理学的新型设备,为十名患有TRD的参与者提供SCC DBS(ClinicalTrials.gov编号NCT01984710)。在24周的研究终点,90%的参与者表现出强有力的临床反应,70%的参与者病情得到缓解。利用六名参与者的SCC局部场电位,研究人员采用了一种可解释的人工智能方法来识别表明患者当前临床状态的SCC局部场电位变化。这种生物标志物有别于瞬时刺激效应,对治疗调整敏感,并能准确捕捉个体恢复状态。不同的恢复轨迹可通过术前对目标白质治疗网络内的结构完整性和功能连通性的损害程度进行预测,并与通过数据驱动的视频分析检测到的客观面部表情变化相匹配。这些研究结果证明了客观生物标志物在个性化SCC DBS管理中的实用性,并为了解TRD病理的多方面(功能、解剖和行为)特征之间的关系提供了新的视角,促使人们进一步研究抑郁症治疗中的变异原因。

附:英文原文

Title: Cingulate dynamics track depression recovery with deep brain stimulation

Author: Alagapan, Sankaraleengam, Choi, Ki Sueng, Heisig, Stephen, Riva-Posse, Patricio, Crowell, Andrea, Tiruvadi, Vineet, Obatusin, Mosadoluwa, Veerakumar, Ashan, Waters, Allison C., Gross, Robert E., Quinn, Sinead, Denison, Lydia, OShaughnessy, Matthew, Connor, Marissa, Canal, Gregory, Cha, Jungho, Hershenberg, Rachel, Nauvel, Tanya, Isbaine, Faical, Afzal, Muhammad Furqan, Figee, Martijn, Kopell, Brian H., Butera, Robert, Mayberg, Helen S., Rozell, Christopher J.

Issue&Volume: 2023-09-20

Abstract: Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide long-term symptom relief for treatment-resistant depression (TRD)1. However, achieving stable recovery is unpredictable2, typically requiring trial-and-error stimulation adjustments due to individual recovery trajectories and subjective symptom reporting3. We currently lack objective brain-based biomarkers to guide clinical decisions by distinguishing natural transient mood fluctuations from situations requiring intervention. To address this gap, we used a new device enabling electrophysiology recording to deliver SCC DBS to ten TRD participants (ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90% of participants demonstrated robust clinical response, and 70% achieved remission. Using SCC local field potentials available from six participants, we deployed an explainable artificial intelligence approach to identify SCC local field potential changes indicating the patient’s current clinical state. This biomarker is distinct from transient stimulation effects, sensitive to therapeutic adjustments and accurate at capturing individual recovery states. Variable recovery trajectories are predicted by the degree of preoperative damage to the structural integrity and functional connectivity within the targeted white matter treatment network, and are matched by objective facial expression changes detected using data-driven video analysis. Our results demonstrate the utility of objective biomarkers in the management of personalized SCC DBS and provide new insight into the relationship between multifaceted (functional, anatomical and behavioural) features of TRD pathology, motivating further research into causes of variability in depression treatment.

DOI: 10.1038/s41586-023-06541-3

Source: https://www.nature.com/articles/s41586-023-06541-3

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html