近日,德国康斯坦茨大学的Clemens Bechinger及其研究小组取得一项新进展。经过不懈努力,他们揭示记忆诱导的马格努斯效应。相关研究成果已于2023年9月21日在国际知名学术期刊《自然—物理学》上发表。
该研究团队展示了粘弹性流体中旋转胶体的马格努斯力大约增强了一百万倍。这种流体的特点是能够对外部扰动产生延时响应,从而导致围绕移动粒子的流体网络发生变形。当粒子也旋转时,变形场相对于粒子的运动方向会变得错位,从而产生一个垂直于行进方向和自转轴的力。
研究人员在微观尺度上发现了记忆诱导的马格努斯力,这一发现为粒子分类和导引,以及异常流的生成和可视化提供了新的应用途径。
据悉,在空气或液体中旋转的物体会受到升力的作用,这种现象被称为马格努斯效应。这种效应通常在球类运动中得到利用,但在航空工业中的应用也具有相当重要的意义。马格努斯力在大物体上很强,但在小尺度上很弱,最终在简单液体中微米大小的过阻尼粒子上消失。
附:英文原文
Title: Memory-induced Magnus effect
Author: Cao, Xin, Das, Debankur, Windbacher, Niklas, Ginot, Flix, Krger, Matthias, Bechinger, Clemens
Issue&Volume: 2023-09-21
Abstract: Spinning objects moving through air or a liquid experience a lift force—a phenomenon known as the Magnus effect. This effect is commonly exploited in ball sports but also is of considerable importance for applications in the aviation industry. Whereas Magnus forces are strong for large objects, they are weak at small scales and eventually vanish for overdamped micrometre-sized particles in simple liquids. Here we demonstrate a roughly one-million-fold enhanced Magnus force of spinning colloids in viscoelastic fluids. Such fluids are characterized by a time-delayed response to external perturbations, which causes a deformation of the fluidic network around the moving particle. When the particle also spins, the deformation field becomes misaligned relative to the particle’s moving direction, leading to a force perpendicular to the direction of travel and the spinning axis. Our uncovering of strongly enhanced memory-induced Magnus forces at microscales opens up applications for particle sorting and steering, and the creation and visualization of anomalous flows.
DOI: 10.1038/s41567-023-02213-1
Source: https://www.nature.com/articles/s41567-023-02213-1