近日,比利时布鲁塞尔大学的Nicolas Englebert及其所在的课题组与新西兰奥克兰大学的Miro Erkintalo等人合作,研究了合成维度上相干驱动耗散孤子的布洛赫(Bloch)振荡。相关成果已于2023年4月10日在国际学术期刊《自然—物理学》上发表。
该研究团队探讨了布洛赫带输运、非线性和耗散之间的复杂相互作用,研究了在光学共振腔的频率空间中实现的合成维度对系统动力学的影响。研究人员发现存在着沿着合成频率维度的非线性耗散布洛赫振荡,这些振荡由共振腔中的局部耗散结构(孤子)所维持。共振腔中的相干驱动耗散孤子状态具有独特性质,可以将合成维度的有效尺寸扩展到远远超过线性范围,并实现长寿命的布洛赫振荡和高分辨率探测基础带结构。
据介绍,通过工程化合成维度,可以耦合物理系统的离散自由度构建虚构的晶格结构。这种方法使得能够在缺乏真实的周期性晶格结构的情况下研究静态和动态布洛赫带的特性。然而,非线性和耗散所提供的潜在丰富物理现象和机遇却鲜有被探索。
附:英文原文
Title: Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension
Author: Englebert, Nicolas, Goldman, Nathan, Erkintalo, Miro, Mostaan, Nader, Gorza, Simon-Pierre, Leo, Franois, Fatome, Julien
Issue&Volume: 2023-04-10
Abstract: The engineering of synthetic dimensions allows for the construction of fictitious lattice structures by coupling the discrete degrees of freedom of a physical system. This method enables the study of static and dynamical Bloch band properties in the absence of a real periodic lattice structure. In that context, the potentially rich physics and opportunities offered by non-linearities and dissipation have remained largely unexplored. Here we investigate the complex interplay between Bloch band transport, non-linearity and dissipation, exploring how a synthetic dimension realized in the frequency space of a coherently driven optical resonator influences the dynamics of the system. We observe and study non-linear dissipative Bloch oscillations along the synthetic frequency dimension, sustained by localized dissipative structures (solitons) that persist in the resonator. The unique properties of the coherently driven dissipative soliton states can extend the effective size of the synthetic dimension far beyond that achieved in the linear regime, as well as enable long-lived Bloch oscillations and high-resolution probing of the underlying band structure.
DOI: 10.1038/s41567-023-02005-7
Source: https://www.nature.com/articles/s41567-023-02005-7