美国加州大学Takaki Komiyama和Nathan G. Hedrick共同合作,近期取得重要工作进展。他们研究发现学习可以通过新棘形成将新的输入绑定到功能性突触簇中。相关论文2022年6月2日在线发表于《自然—神经科学》杂志上。
在这里,研究人员在小鼠运动学习期间,使用小鼠运动皮层中树突棘的纵向体内双光子成像和相关电子显微镜,描述了新的与学习相关的树突棘的形成、存活和由此产生功能的框架。具体来说,他们的数据表明,学习过程中新棘的形成是由在早期学习期间,表现出与任务相关活动功能聚集的预先存在棘的增强引导的。
他们提出的证据表明,这种聚集增强诱导了附近树突的多个丝状体的局部生长,对邻近的神经元进行采样,以寻找潜在的轴突伙伴,可能是通过靶向预先存在的突触前小结。然后根据与附近与任务相关的棘的共同活动,选择成功的连接进行生存,确保新的棘保留了功能集群。由此产生的新棘的局部连贯活动标志着学习运动。
此外,研究人员还发现大多数新的棘突触有以前在这些树突结构域中不存在的轴突。因此,学习涉及将新信息流绑定到功能性突触簇中,以促进学习行为。
据了解,学习可以诱导以树突棘的形式形成新的兴奋性突触,但它们的功能特性尚不清楚。
附:英文原文
Title: Learning binds new inputs into functional synaptic clusters via spinogenesis
Author: Hedrick, Nathan G., Lu, Zhongmin, Bushong, Eric, Singhi, Surbhi, Nguyen, Peter, Magaa, Yessenia, Jilani, Sayyed, Lim, Byung Kook, Ellisman, Mark, Komiyama, Takaki
Issue&Volume: 2022-06-02
Abstract: Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors. Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.
DOI: 10.1038/s41593-022-01086-6
Source: https://www.nature.com/articles/s41593-022-01086-6
Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新IF:21.126
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex
